Skip to main content
Log in

Regulation of NF-κB induction by TCR/CD28

  • UNIVERSITY OF PITTSBURGH IMMUNOLOGY 2011
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

NF-κB family transcription factors are a common downstream target for inducible transcription mediated by many different cell-surface receptors, especially those receptors involved in inflammation and adaptive immunity. It is now clear that different classes of receptors employ different proximal signaling strategies to activate the common NF-κB signaling components, such as the IKK complex. For antigen receptors expressed by T and B cells, this pathway requires a complex of proteins including the proteins Carma1, Bcl10, and Malt1. Here, we discuss some of what is known about regulation of these proteins downstream of TCR/CD3 and co-stimulatory CD28 signaling. We also discuss another unique aspect of TCR-mediated NF-κB activation, i.e., the spatial restriction imposed on signaling events by the formation of the immunological synapse between a T cell and antigen-presenting cell presenting specific peptide/MHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Au-Yeung BB, et al. The structure, regulation, and function of ZAP-70. Immunol Rev. 2009;228:41–57.

    Article  PubMed  CAS  Google Scholar 

  2. Salmond RJ, Filby A, Qureshi I, Caserta S, Zamoyska R. T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev. 2009;228:9–22.

    Article  PubMed  CAS  Google Scholar 

  3. Hayashi K, Altman A. Protein kinase C theta (PKCtheta): a key player in T cell life and death. Pharmacol Res. 2007;55:537–44.

    Article  PubMed  CAS  Google Scholar 

  4. Isakov N, Altman A. Protein kinase C(theta) in T cell activation. Annu Rev Immunol. 2002;20:761–94.

    Article  PubMed  CAS  Google Scholar 

  5. Lin X, O’Mahony A, Mu Y, Geleziunas R, Greene WC. Protein kinase C-theta participates in NF-kappaB activation induced by CD3-CD28 costimulation through selective activation of IkappaB kinase beta [In Process Citation]. Mol Cell Biol. 2000;20:2933–40.

    Article  PubMed  CAS  Google Scholar 

  6. Monks CR, Kupfer H, Tamir I, Barlow A, Kupfer A. Selective modulation of protein kinase C-theta during T-cell activation. Nature. 1997;385:83–6.

    Article  PubMed  CAS  Google Scholar 

  7. Gaide O, et al. CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-kappa B activation. Nat Immunol. 2002;3:836–43.

    Article  PubMed  CAS  Google Scholar 

  8. Wang D, et al. A requirement for CARMA1 in TCR-induced NF-kappa B activation. Nat Immunol. 2002;3:830–5.

    Article  PubMed  CAS  Google Scholar 

  9. Gaide O, Martinon F, Micheau O, Bonnet D, Thome M, Tschopp J. Carma1, a CARD-containing binding partner of Bcl10, induces Bcl10 phosphorylation and NF-kappaB activation. FEBS Lett. 2001;496:121–7.

    Article  PubMed  CAS  Google Scholar 

  10. Matsumoto R, et al. Phosphorylation of CARMA1 plays a critical role in T Cell receptor-mediated NF-kappaB activation. Immunity. 2005;23:575–85.

    Article  PubMed  CAS  Google Scholar 

  11. Sommer K, et al. Phosphorylation of the CARMA1 Linker Controls NF-kappaB Activation. Immunity. 2005;23:561–74.

    Article  PubMed  CAS  Google Scholar 

  12. Blonska M, Lin X. CARMA1-mediated NF-kappaB and JNK activation in lymphocytes. Immunol Rev. 2009;228:199–211.

    Article  PubMed  CAS  Google Scholar 

  13. Lin X, Wang D. The roles of CARMA1, Bcl10, and MALT1 in antigen receptor signaling. Semin Immunol. 2004;16:429–35.

    Article  PubMed  CAS  Google Scholar 

  14. Rueda D, Thome M. Phosphorylation of CARMA1: the link(er) to NF-kappaB activation. Immunity. 2005;23:551–3.

    Article  PubMed  CAS  Google Scholar 

  15. Park SG, et al. The kinase PDK1 integrates T cell antigen receptor and CD28 coreceptor signaling to induce NF-kappaB and activate T cells. Nat Immunol. 2009;10:158–66.

    Article  PubMed  CAS  Google Scholar 

  16. Narayan P, Holt B, Tosti R, Kane LP. CARMA1 is required for Akt-mediated NF-kappaB activation in T cells. Mol Cell Biol. 2006;26:2327–36.

    Article  PubMed  CAS  Google Scholar 

  17. Shinohara H, Maeda S, Watarai H, Kurosaki T. IkappaB kinase beta-induced phosphorylation of CARMA1 contributes to CARMA1 Bcl10 MALT1 complex formation in B cells. J Exp Med. 2007;204:3285–93.

    Article  PubMed  CAS  Google Scholar 

  18. Bidere N, et al. Casein kinase 1alpha governs antigen-receptor-induced NF-kappaB activation and human lymphoma cell survival. Nature. 2009;458:92–6.

    Article  PubMed  CAS  Google Scholar 

  19. Sebban H, Yamaoka S, Courtois G. Posttranslational modifications of NEMO and its partners in NF-kappaB signaling. Trends Cell Biol. 2006;16:569–77.

    Article  PubMed  CAS  Google Scholar 

  20. Hacker H, Karin M. Regulation and function of IKK and IKK-related kinases. Sci STKE. 2006; 2006:re13.

  21. Shambharkar PB, et al. Phosphorylation and ubiquitination of the IkappaB kinase complex by two distinct signaling pathways. EMBO J. 2007;26:1794–805.

    Article  PubMed  CAS  Google Scholar 

  22. Uren AG, et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell. 2000;6:961–7.

    PubMed  CAS  Google Scholar 

  23. Rebeaud F, et al. The proteolytic activity of the paracaspase MALT1 is key in T cell activation. Nat Immunol. 2008.

  24. Sun L, Deng L, Ea CK, Xia ZP, Chen ZJ. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell. 2004;14:289–301.

    Article  PubMed  CAS  Google Scholar 

  25. Oeckinghaus A, et al. Malt1 ubiquitination triggers NF-kappaB signaling upon T-cell activation. Embo J. 2007.

  26. Bidere N, Snow AL, Sakai K, Zheng L, Lenardo MJ. Caspase-8 regulation by direct interaction with TRAF6 in T cell receptor-induced NF-kappaB activation. Curr Biol. 2006;16:1666–71.

    Article  PubMed  CAS  Google Scholar 

  27. Su H, et al. Requirement for caspase-8 in NF-kappaB activation by antigen receptor. Science. 2005;307:1465–8.

    Article  PubMed  CAS  Google Scholar 

  28. Misra RS, et al. Caspase-8 and c-FLIPL associate in lipid rafts with NF-kappaB adaptors during T cell activation. J Biol Chem. 2007;282:19365–74.

    Article  PubMed  CAS  Google Scholar 

  29. Lee K-Y, D’Acquisto F, Hayden MS, Shim J-H, Ghosh S. PDK1 nucleates T cell receptor-induced signaling complex for NF-kappaB activation. Science. 2005;308:114–8.

    Article  PubMed  CAS  Google Scholar 

  30. Srivastava R, Burbach BJ, Shimizu Y. NF-kappaB activation in T cells requires discrete control of IkappaB kinase alpha/beta (IKKalpha/beta) phosphorylation and IKKgamma ubiquitination by the ADAP adapter protein. J Biol Chem. 2010;285:11100–5.

    Article  PubMed  CAS  Google Scholar 

  31. Medeiros RB, et al. Regulation of NF-kappaB activation in T cells via association of the adapter proteins ADAP and CARMA1. Science. 2007;316:754–8.

    Article  PubMed  CAS  Google Scholar 

  32. Acuto O, Michel F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol. 2003;3:939–51.

    Article  PubMed  CAS  Google Scholar 

  33. Diehn M, et al. Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc Natl Acad Sci USA. 2002;23:23.

    Google Scholar 

  34. Ashall L, et al. Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science. 2009;324:242–6.

    Article  PubMed  CAS  Google Scholar 

  35. Hoffmann A, Levchenko A, Scott ML, Baltimore D. The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science. 2002;298:1241–5.

    Article  PubMed  CAS  Google Scholar 

  36. Nelson DE, et al. Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science. 2004;306:704–8.

    Article  PubMed  CAS  Google Scholar 

  37. Tian B, Nowak DE, Brasier AR. A TNF-induced gene expression program under oscillatory NF-kappaB control. BMC Genomics. 2005;6:137.

    Article  PubMed  Google Scholar 

  38. Werner SL, Barken D, Hoffmann A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science. 2005;309:1857–61.

    Article  PubMed  CAS  Google Scholar 

  39. Dubey C, Croft M. Accessory molecule regulation of naive CD4 T cell activation. Immunol Res. 1996;15:114–25.

    Article  PubMed  CAS  Google Scholar 

  40. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature. 1998;395:82–6.

    Article  PubMed  CAS  Google Scholar 

  41. Grakoui A, et al. The immunological synapse: a molecular machine controlling T cell activation. Science. 1999;285:221–7.

    Article  PubMed  CAS  Google Scholar 

  42. Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM. Direct observation of ligand recognition by T cells. Nature. 2002;419:845–9.

    Article  PubMed  CAS  Google Scholar 

  43. Lee KH, Holdorf AD, Dustin ML, Chan AC, Allen PM, Shaw AS. T cell receptor signaling precedes immunological synapse formation. Science. 2002;295:1539–42.

    Article  PubMed  CAS  Google Scholar 

  44. Bunnell SC, et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J Cell Biol. 2002;158:1263–75.

    Article  PubMed  CAS  Google Scholar 

  45. Campi G, Varma R, Dustin ML. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J Exp Med. 2005;202:1031–6.

    Article  PubMed  CAS  Google Scholar 

  46. Varma R, Campi G, Yokosuka T, Saito T, Dustin ML. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity. 2006;25:117–27.

    Article  PubMed  CAS  Google Scholar 

  47. Weil R, Schwamborn K, Alcover A, Bessia C, Di Bartolo V, Israel A. Induction of the NF-kappaB cascade by recruitment of the scaffold molecule NEMO to the T cell receptor. Immunity. 2003;18:13–26.

    Article  PubMed  CAS  Google Scholar 

  48. Hara H, et al. The molecular adapter Carma1 controls entry of IkappaB kinase into the central immune synapse. J Exp Med. 2004;200:1167–77.

    Article  PubMed  CAS  Google Scholar 

  49. Wang D, et al. CD3/CD28 costimulation-induced NF-kappaB activation is mediated by recruitment of protein kinase C-theta, Bcl10, and IkappaB kinase beta to the immunological synapse through CARMA1. Mol Cell Biol. 2004;24:164–71.

    Article  PubMed  CAS  Google Scholar 

  50. Schaefer BC, Kappler JW, Kupfer A, Marrack P. Complex and dynamic redistribution of NF-kappaB signaling intermediates in response to T cell receptor stimulation. Proc Natl Acad Sci USA. 2004;101:1004–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence P. Kane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, J., Montecalvo, A. & Kane, L.P. Regulation of NF-κB induction by TCR/CD28. Immunol Res 50, 113–117 (2011). https://doi.org/10.1007/s12026-011-8216-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-011-8216-z

Keywords

Navigation