Skip to main content
Log in

Cardiovascular Toxicity of Different Sizes Amorphous Silica Nanoparticles in Rats After Intratracheal Instillation

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The purpose of this work was to investigate the cardiovascular toxicity of different sizes and different dosages of silica nanoparticles in Wistar rats. The three silica nanoparticles (30, 60, and 90 nm) and one fine silica particles (600 nm) at three doses of 2, 5, and 10 (mg/Kg bw) were used in the present experiment. After intratracheal instillation for a total of 16 times, concentration of Si in hearts and serum was measured by inductively coupled plasma optical emission spectrometer. The hematology parameters were analyzed by an automated hematology analyzer, and the inflammatory reaction, oxidative stress, endothelial dysfunction, and the myocardial enzymes in serum were measured by kits. Our results showed intratracheal-instilled silica nanoparticles could pass through the alveolar-capillary barrier into systemic circulation. Concentration of Si in the heart and serum depended on the particles size and dosage. The levels of reactive oxygen species (ROS) at 5, 10 mg/Kg bw of the three silica nanoparticles were higher than the fine silica particles. Blood levels of inflammation-related high-sensitivity C-reactive protein and cytokines such as interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha were increased after exposure to three silica nanoparticles at 10 mg/Kg bw. Moreover, the levels of IL-1β and IL-6 at 10 mg/Kg bw of silica nanoparticles (30 nm) were higher than the fine silica particles. Significant decrease in superoxide dismutase, glutathione peroxidase and significant increase in malondialdehyde were observed at 10 mg/Kg bw of the three silica nanoparticles. A significant decrease in nitric oxide (NO) production was induced which coincided with the reduction of nitric oxide synthase (NOS) activity and the excessive generation of ROS in rats. The levels of intercellular adhesion molecule-l and vascular cell adhesion molecule-l elevated significantly after exposure to three silica nanoparticles at 10 mg/Kg bw, which are considered as early steps of endothelial dysfunction. We conclude that cardiovascular toxicity of silica nanoparticles could be related to the particles size and dosage. Oxidative stress could be involved in inflammatory reaction and endothelial dysfunction, all of which could aggravate cardiovascular toxicology. In addition, endothelial NO/NOS system disorder caused by nanoparticles could be one of the mechanisms for endothelial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nel, A., Xia, T., Madler, L., & Li, Ning. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–627.

    Article  PubMed  CAS  Google Scholar 

  2. Oberdörster, G., Oberdorster, E., & Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7), 823–839.

    Article  PubMed  Google Scholar 

  3. Li, Y., Sun, L., Sun, Z. W., Jin, M. H., & Du, Z. J. (2011). Size-dependent cytotoxicity of amorphous silica nanoparticles in human hepatoma HepG2 cells. Toxicology in Vitro, 25(7), 1343–1352.

    Article  PubMed  CAS  Google Scholar 

  4. LeBlanc, A. J., Cumpston, J. L., Chen, B. T., Frazer, D., Castranova, V., & Nurkiewicz, T. R. (2010). Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. Journal of Toxicology and Environmental Health Part A, 72(24), 1576–1584.

    Article  Google Scholar 

  5. Zhu, M. T., Wang, B., Yuan, L., et al. (2011). Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis. Toxicology Letters, 203, 162–171.

    Article  PubMed  CAS  Google Scholar 

  6. Kleinman, M. T., Araujo, J. A., Nel, A., Sioutas, C., Campbell, A., Cong, P. Q., et al. (2008). Inhaled ultrafine particulate matter affects CNS inflammatory processes and may act via MAP kinase signaling pathways. Toxicology Letters, 178, 127–130.

    Article  PubMed  CAS  Google Scholar 

  7. Nurkiewicz, T. R., Porter, D. W., Hubbs, A. F., & Chen, B. T. (2008). Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part Fibre Toxicology, 5, 1.

    Article  Google Scholar 

  8. Samet, J. M., Dominici, F. R., & Curriero, F. C. D. (2000). Fine particulate air pollution and mortality in 20 US cities, 1987–1994. New England Journal of Medicine, 343, 1742–1749.

    Article  PubMed  CAS  Google Scholar 

  9. Stern, S. T., & McNeil, S. E. (2008). Nanotechnology safety concerns revisited. Toxicological Sciences, 101, 4–21.

    Article  PubMed  CAS  Google Scholar 

  10. Gauderman, W. J., Avol, E., & Gilliland, F. (2004). The effect of air pollution on lung development from 10 to 18 years of age. New England Journal of Medicine, 351, 1057–1067.

    Article  PubMed  CAS  Google Scholar 

  11. Ni, Bai., Majid, Khazaei., van Eeden, S. F., & Laher, I. (2007). The pharmacology of particulate matter air pollution-induced cardiovascular dysfunction. Pharmacology & Therapeutics, 113, 16–29.

    Article  Google Scholar 

  12. Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., et al. (2008). Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental Science and Technology, 42(23), 8959–8964.

    Article  PubMed  CAS  Google Scholar 

  13. Hamilton, J. M., Salmon, D. P., Galasko, D. R. R., Emond, J., Hansen, L. A., Masliah, E., et al. (2008). Visuospatial deficits predict rate of cognitive decline in autopsy-verified dementia with Lewy bodies. Neuropsychology, 22(6), 729–737.

    Article  PubMed  Google Scholar 

  14. Dick, C. A., Singh, P., Daniels, M., Evansky, P., Becker, S., & Gilmour, M. I. (2003). Murine pulmonary inflammatory responses following instillation of size-fractionated ambient particulate matter. Journal of Toxicology and Environmental Health Part A, 66(23), 2193–2207.

    Article  PubMed  CAS  Google Scholar 

  15. Bai, J., Chiu, W., Wang, J., Tzeng, T., Perrimon, N., & Hsu, J. (2001). The cell adhesion molecule Echinoid defines a new pathway that antagonizes the Drosophila EGF receptor signaling pathway. Development, 128(4), 591–601.

    PubMed  CAS  Google Scholar 

  16. Sun, Q., Wang, A., Jin, X., Natanzon, A., Duquaine, D., & Brook, R. D. (2005). Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. The Journal of American Medical Association, 294, 3003–3010.

    Article  CAS  Google Scholar 

  17. Arts, J. H., Muijser, H., Duistermaat, E., Junker, K., & Kuper, C. F. (2007). Five-day inhalation toxicity study of three types of synthetic amorphous silicas in Wistar rats and post-exposure evaluations for up to 3 months. Food and Chemical Toxicology, 45, 1856–1867.

    Article  PubMed  CAS  Google Scholar 

  18. Park, E. J., & Park, K. (2009). Oxidative stress and pro-inflammatorty responses induced by silica nanoparticles in vivo and in vitro. Toxicology Letters, 184, 18–25.

    Article  PubMed  CAS  Google Scholar 

  19. Liu, Y., Jiao, F., Qiu, Y., Dong, J. Q., Zhao, Yl., Chen, C. Y., et al. (2009). The effect of Gd @ C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α mediated cellular immunity. Biomaterials, 30, 3934–3945.

    Article  PubMed  CAS  Google Scholar 

  20. Braydich-Stolle, L., Hussain, S., Schlager, J. J., & Hofmann, M. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences, 88, 412–419.

    Article  PubMed  CAS  Google Scholar 

  21. Foster, K. A., Yazdanian, M., & Audus, K. L. (2001). Microparticulate uptake mechanisms of in vitro cell culture models of the respiratory epithelium. Journal of Pharmacy and Pharmacology, 53, 57–66.

    Article  PubMed  CAS  Google Scholar 

  22. Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., et al. (2002). Extrapulmonary translocation of ultrafine carbon particles following wholebody inhalation exposure of rats. Journal of Toxicology and Environmental Health Part A, 65, 1531–1543.

    Article  PubMed  Google Scholar 

  23. Seaton, A., MacNee, W., & Donaldson, K. (1995). Particulate air pollution and acute health effect. Lancet, 345(8943), 176–178.

    Article  PubMed  CAS  Google Scholar 

  24. Donaldson, K., & Stone, V. (2003). Current hypotheses on the mechanisms of toxicity of ultrafine particles. Annali dell Istituto Superiore di Sanita, 39, 405–410.

    PubMed  CAS  Google Scholar 

  25. Schins, P. F., Lightbody, J. H., Borm, P. J. A., Shi, T., Donaldson, K., & Stone, V. (2004). Inflammatory effects of coarse and fine particulate matter in relation to chemical and biological constituents. Toxicology and Applied Pharmacology, 195, 1–11.

    Article  PubMed  CAS  Google Scholar 

  26. Lin, W., Huang, Y. W., Zhou, X. D., & Ma, Y. (2006). In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicology and Applied Pharmacology, 217, 252–259.

    Article  PubMed  CAS  Google Scholar 

  27. Yuan, X. M., & Li, W. (2008). Iron involvement in multiple signaling pathways of atherosclerosis: A revisited hypothesis. Current Medicinal Chemistry, 15(21), 2157–2172.

    Article  PubMed  CAS  Google Scholar 

  28. Ramage, L., Proudfoot, L., & Guy, K. (2004). Expression of C-reactive protein in human lung epithelial cells and upregulation by cytokines and carbon particles. Inhalation Toxicology, 16, 607–613.

    Article  PubMed  CAS  Google Scholar 

  29. Ramage, L., & Guy, K. (2004). Expression of C-reactive protein and heat-shock protein-70 in the lung epithelial cell line A549, in response to PM10 exposure. Inhalation Toxicology, 16, 447–452.

    Article  PubMed  CAS  Google Scholar 

  30. Fibrinogen Studies Collaboration. (2007). Associations of plasma fibrinogen levels with established cardiovascular disease risk factors, inflammatory markers, and other characteristics: Individual participant meta-analysis of 151, 211 adults in 31 prospective studies. American Journal of Epidemiology, 166, 867–879.

    Article  Google Scholar 

  31. Libby, P. (2002). Inflammation in atherosclerosis. Nature, 420, 868–874.

    Article  PubMed  CAS  Google Scholar 

  32. Lindmark, E., Diderholm, E., & Wallentin, L. (2001). Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: Effects of an early invasive or noninvasive strategy. The Journal of American Medical Association, 286, 2107–2113.

    Article  CAS  Google Scholar 

  33. Wang, J., Zhou, G., Chen, C., & Yu, H. (2007). Acute toxicity and biodistribution of different sized titanium aioxide particles in mice after oral administration. Toxicology Letters, 168, 176–185.

    Article  PubMed  CAS  Google Scholar 

  34. Cao, Q., Zhang, S., Dong, C., & Song, W. (2007). Pulmonary responses to fine particles: Different between the spontaneously hypertensive rates and wistar Kyoto rats. Toxicology Letters, 171, 126–137.

    Article  PubMed  CAS  Google Scholar 

  35. Cho, W. S., Choi, M., Han, B. S., & Jeong, J. (2007). Inflammmatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicology Letters, 175, 24–33.

    Article  PubMed  CAS  Google Scholar 

  36. Wiseman, D. A., Wells, S. M., Wilham, J., Hubbard, M., Welker, J. E., & Black, S. M. (2006). Endothelial response to stress from exogenous Zn2+ resembles that of NO-mediated nitrosative stress, and is protected by MT-1 overexpression. American Journal of Physiology and Cell Physiology, 291, C555–C568.

    Article  CAS  Google Scholar 

  37. Chung, H. T., Pae, H. O., Choi, B. M., Billiar, T. R., & Kim, Y. M. (2001). Nitric oxide as a bioregulator of apoptosis. Biochemical and Biophysical Research Communications, 282, 1075–1079.

    Article  PubMed  CAS  Google Scholar 

  38. Hsiai, T. K., Cho, S. K., Reddy, S., Hama, S., Navab, M., Demer, L. L., et al. (2001). Pulsatile flow regulates monocyte adhesion to oxidized lipid-induced endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 1770–1776.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang, X. Y., Yin, J. L., & Cheng, K. (2010). Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicology Letters, 198, 237–243.

    Article  PubMed  CAS  Google Scholar 

  40. Karacalioglu, O., Arslan, Z., & Kilie, S. (2007). Baseline serum levels of cardiac biomarkers in patients with stable coronary artery disease. Biomarkers, 12(5), 533–540.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Wensheng Yang, and Dr. Jianquan Xu from Jilin University for the preparation of silica particles. This work was supported by Grant of Specialized Research Fund for the Doctoral Program of Higher Education (20090061110062) and Jilin University Research Foundation for Basic Science (200903112).

Conflict of interest

The authors declare that there are no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianqing Zhou or Zhiwei Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Z., Zhao, D., Jing, L. et al. Cardiovascular Toxicity of Different Sizes Amorphous Silica Nanoparticles in Rats After Intratracheal Instillation. Cardiovasc Toxicol 13, 194–207 (2013). https://doi.org/10.1007/s12012-013-9198-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-013-9198-y

Keywords

Navigation