Skip to main content
Log in

Selenoenzymes, Laboratory Parameters, and Trace Elements in Different Types of Thyroid Tumor

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study was performed to investigate selenoenzyme activities and trace element concentrations in thyroid tissues, with reference to other parameters routinely used to characterize thyroid function. This was to reveal relevant parameters as possible additional markers of tumor grade, clinical course, and prognosis of thyroid disorders. The tissue samples were obtained during surgical treatment (total or near total thyroidectomy) of 122 patients with different types of thyroid tumor. For most of the investigated parameters in different groups of patients, we did not find statistically significant differences. In the majority of cases, thyroid benign or malignant tumors were not accompanied by significant derangement of the gland selenoenzymes and of either intrathyroidal or plasma concentration of selenium. Nevertheless, types I and II iodothyronine deiodinases were the most promising (among selenoenzymes) targets for diagnoses and possibly therapy of thyroid tumors. Higher activities of both enzymes in cases with Graves’ disease, as compared with other thyroid lesions, suggest their involvement in the pathogenesis of this condition. Patients with struna nodosa had higher levels of thyroid Zn, Cu, and Pb as compared with papillary carcinoma subjects and also a higher level of Cu than follicular carcinoma cases. The above diagnostics may play a similar role to some of the general thyroid function indices, TSH, anti-TG, anti-TPO, and calcitonin, which can partially distinguish between various thyroid tumors. In conclusion, some of selenium status markers, when accompanied with general parameters, and trace elements can serve as factors with pathophysiologic relevance and be helpful in the identification of malignant disease. Multivariate statistical methods should be employed to tackle a broad array of thyroid tumor diagnostic data in a short time. Partial least squares model and other pattern recognition methods seem to be the most appropriate methods for that task. The miniaturization of all the steps of complex analytical procedure should be developed in a way to allow its completion as sensitive, robust, and efficient for use of the small quantity of material provided by fine-needle biopsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Preliminary results were presented at following conferences: 39th Meeting of The Polish Biochemical Society, Gdańsk, Poland, Sept. 16–20 2003; 13th International Symposium: Molecular and Physiological Aspects of Regulatory Processes of the Organism, Cracow, Poland, June 3–4, 2004; 9th Symposium of Atomic Absorption, Ustroń, Poland, Sept. 19–21 2005; 4th Conference: Chemometrics—Methods and Applications, Zakopane, Poland, Oct. 23–26, 2008.

References

  1. Sherman SI (2003) Thyroid carcinoma. Lancet 361:501–511

    Article  PubMed  Google Scholar 

  2. LiVolsi VA, Baloch ZW (2004) Follicular neoplasms of the thyroid: view, biases, and experiences. Adv Anat Pathol 11:279–287

    Article  PubMed  Google Scholar 

  3. Cerci C, Cerci SS, Eroglu E (2007) Thyroid cancer in toxic and non-toxic multinodular goiter. J Postgrad Med 53:157–160

    Article  CAS  PubMed  Google Scholar 

  4. Blankenship DR, Chin E, Terris DJ (2005) Contemporary management of thyroid cancer. Am J Otolaryngol 26:249–260

    Article  PubMed  Google Scholar 

  5. Mittendorf EA, Khiyami A, McHenry CR (2006) When fine-needle aspiration biopsy cannot exclude papillary thyroid cancer: a therapeutic dilemma. Arch Surg 141:961–966

    Article  PubMed  Google Scholar 

  6. Jamski J, Barczyński M, Cichoń S (2002) Management and surgical technique in thyroid cancer. Przeg Chirurg 74:61–71

    Google Scholar 

  7. Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. J Endocrinol 184:455–465

    Article  CAS  PubMed  Google Scholar 

  8. Köhrle J, Jakob F, Contempré B et al (2005) Selenium, the thyroid, and the endocrine system. Endocr Rev 26:944–984

    Article  PubMed  Google Scholar 

  9. Duntas LH (2006) An update on the role of selenium in thyroid autoimmunity and cancer. Thyroid 16:455–460

    Article  CAS  PubMed  Google Scholar 

  10. Zagrodzki P, Nicol F, McCoy MA et al (1998) Iodine deficiency in cattle: compensatory changes in thyroidal selenoenzymes. Res Vet Sci 64:209–211

    Article  CAS  PubMed  Google Scholar 

  11. Sawada K, Hummel BC, Walfish PG (1986) Properties of cytosolic components activating rat hepatic 5’[corrected]-deiodination in the presence of NADPH. Biochem J 234:391–398

    CAS  PubMed  Google Scholar 

  12. Gromer S, Merkle H, Schirmer RH, Becker K (2002) Human placenta thioredoxin reductase: preparation and inhibitor studies. Methods Enzymol 347:382–394

    Article  CAS  PubMed  Google Scholar 

  13. Zagrodzki P, Joniec A, Gawlik M et al (2007) Influence of high fructose diet on the antioxidant status of rats’ tissues. Bull Vet Inst Pulawy 51:407–412

    Google Scholar 

  14. Wietecha-Posluszny R, Dobrowolska J, Koscielniak P, Zagrodzki P (2009) Determination of selenium as a biomarker of thyroid cancer by HG-AFS method. Acta Chim Sloven 56:441–446

    CAS  Google Scholar 

  15. Zagrodzki P, Walas S, Mrowiec H, Wietecha-Posłuszny R, Słowiaczek M (2009) Selenium indices, trace elements and thyroid hormones in various types of thyroid tumours. In: Zuba D, Parczewski A (eds) Chemometrics. Institute of Forensic Research, Kraków (in press, in Polish).

  16. Shuja S, Murnane MJ (1996) Marked increases in cathepsin B and L activities distinguish papillary carcinoma of the thyroid from normal thyroid or thyroid with non-neoplastic disease. Int J Cancer 66:420–426

    Article  CAS  PubMed  Google Scholar 

  17. González-Cámpora R, García-Sanatana JA, Heras MM Jordà i et al (1998) Blood group antigens in differentiated thyroid neoplasms. Arch Pathol Lab Med 122:957–965

    PubMed  Google Scholar 

  18. Salvatore G, Giannini R, Faviana P et al (2004) Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab 89:5175–5180

    Article  CAS  PubMed  Google Scholar 

  19. Xing M, Tufano RP, Tufaro AP et al (2004) Detection of BRAF mutation on fine needle aspiration biopsy specimens: a new diagnostic tool for papillary thyroid cancer. J Clin Endocrinol Metab 89:2867–2872

    Article  CAS  PubMed  Google Scholar 

  20. De Micco C, Ruf J, Chrestian MA, Gros N, Henry JF, Carayon P (1991) Immunohistochemical study of thyroid peroxidase in normal, hyperplastic, and neoplastic human thyroid tissues. Cancer 67:3036–3041

    Article  PubMed  Google Scholar 

  21. Christensen L, Blichert-Toft M, Brandt M (2000) Thyroperoxidase (TPO) immunostaining of the solitary cold thyroid nodule. Clin Endocrinol (Oxf) 53:161–169

    Article  CAS  Google Scholar 

  22. Czarnocka B, Pastuszko D, Janota-Bzowski M (2001) Is there loss or qualitative changes in the expression of thyroid peroxidase protein in thyroid epithelial cancer? Br J Cancer 85:875–880

    Article  CAS  PubMed  Google Scholar 

  23. Krześlak A, Pomorski L, Gaj Z, Lipińska A (2003) Differences in glycosylation of intracellular proteins between benign and malignant thyroid neoplasms. Cancer Lett 196:101–107

    Article  PubMed  Google Scholar 

  24. Schreck R, Schnieders F, Schmutzler C, Köhrle J (1994) Retinoids stimulate type I iodothyronine 5’-deiodinase activity in human follicular thyroid carcinoma cell lines. J Clin Endocrinol Metab 79:791–798

    Article  CAS  PubMed  Google Scholar 

  25. Köhrle J, Oertel M, Hoang-Vu C, Schnieders F, Brabant G (1993) Type I 5’-deiodinase—a marker for differentiated thyroid carcinoma? Exp Clin Endocrinol 101:60–72

    Google Scholar 

  26. Schmutzler C, Hoang-Vu C, Rüger B, Köhrle J (2004) Human thyroid carcinoma cell lines show different retinoic acid receptor repertoires and retinoid responses. Eur J Endocrinol 150:547–556

    Article  CAS  PubMed  Google Scholar 

  27. Mazzanti C, Zeiger MA, Costouros NG (2004) Using gene expression profiling to differentiate benign versus malignant thyroid tumors. Cancer Res 64:2898–2903

    Article  CAS  PubMed  Google Scholar 

  28. Hasegawa Y, Takano T, Miyauchi A et al (2002) Decreased expression of glutathione peroxidase mRNA in thyroid anaplastic carcinoma. Cancer Lett 182:69–74

    Article  CAS  PubMed  Google Scholar 

  29. Jellum E, Andersen A, Lund-Larsen P, Theodorsen L, Orjasaeter H (1993) The JANUS serum bank. Sci Total Environ 139–140:527–535

    PubMed  Google Scholar 

  30. Glattre E, Thomassen Y, Thoresen SO (1989) Prediagnostic serum selenium in a case-control study of thyroid cancer. Int J Epidemiol 18:45–49

    Article  CAS  PubMed  Google Scholar 

  31. Wasowicz W, Gromadzinska J, Rydzynski K, Tomczak J (2003) Selenium status of low-selenium area residents: Polish experience. Toxicol Lett 137:95–101

    Article  CAS  PubMed  Google Scholar 

  32. Komosinska-Vassev K, Olczyk K, Kucharz EJ (2000) Free radical activity and antioxidant defense mechanisms in patients with hyperthyroidism due to Graves’ disease during therapy. Clin Chim Acta 300:107–117

    Article  CAS  PubMed  Google Scholar 

  33. Oertel M, Hesch RD, Köhrle J (1991) Type I 5’deiodinase and its 27 kDa substrate binding subunit are expressed in FRTL-5 but not in human FTC-133 follicular thyroid carcinoma cells. In: Gordon A, Gross J, Hennemann G. Progress in Thyroid Research. Proceedings of the 10th International Thyroid Conference, The Hague, 4–8 Feb, 1991, pp. 685–688. A. A. Balkema, Rotterdam, Brookfield

  34. Zagrodzki P, Nicol F, Arthur JR, Słowiaczek M (2001) Selenoproteins in human thyroid tissues. Biofactors 14:223–227

    Article  CAS  PubMed  Google Scholar 

  35. Kucharzewski M, Braziewicz J, Majewska U, Gozdz S (2002) Concentration of selenium in the whole blood and the thyroid tissue of patients with various thyroid diseases. Biol Trace Elem Res 88:25–30

    Article  CAS  PubMed  Google Scholar 

  36. Zaichick VY, Tsyb AF, Vtyurin BM (1995) Trace elements and thyroid cancer. Analyst 120:817–821

    Article  CAS  PubMed  Google Scholar 

  37. Kvicala J, Havelka J, Nemec J, Zeman V (1992) Selenium and rubidium changes in subjects with pathologically altered thyroid. Biol Trace Element Res 32:253–258

    Article  CAS  Google Scholar 

  38. Reddy SB, Charles MJ, Kumar MR et al (2002) Trace elemental analysis of adenoma and carcinoma thyroid by PIXE method. Nucl Instr Meth B 196:333–339

    Article  CAS  Google Scholar 

  39. Kvicala J, Zamrazil V, Soutorova M (1995) Correlations between parameters of body selenium status and peripheral thyroid parameters in the low selenium region. Analyst 120:959–965

    Article  CAS  PubMed  Google Scholar 

  40. Hawkes WCh, Keim NL (2003) Dietary selenium intake modulates thyroid hormone and energy metabolism in men. J Nutr 133:3443–3448

    CAS  PubMed  Google Scholar 

  41. Zagrodzki P, Ratajczak R, Wietecha-Posłuszny R (2007) The interaction between selenium status, sex hormones, and thyroid metabolism in adolescent girls during the luteal phase of their menstrual cycle. Biol Trace Elem Res 120:51–60

    Article  CAS  PubMed  Google Scholar 

  42. Yaman M (2005) The improvement of sensitivity in lead and cadmium determinations using flame atomic absorption spectrometry. Anal Biochem 339:1–8

    Article  CAS  PubMed  Google Scholar 

  43. Aaseth J, Frey H, Glattre E et al (1990) Selenium concentrations in the human thyroid gland. Biol Trace Elem Res 24:147–152

    Article  CAS  PubMed  Google Scholar 

  44. Tiran B, Karpf E, Tiran A (1995) Age dependency of selenium and cadmium content in human liver, kidney, and thyroid. Arch Environ Health 50:242–246

    CAS  PubMed  Google Scholar 

  45. Murillo M, Carrión N, Quintana M et al (2005) Determination of selenium and iodine in human thyroids. J Trace Elem Med Biol 19:23–27

    Article  CAS  PubMed  Google Scholar 

  46. Falnoga I, Tusek-Znidaric M, Horvat M, Stegnar P (2000) Mercury, selenium, and cadmium in human autopsy samples from Idrija residents and mercury mine workers. Environ Res 84:211–218

    Article  CAS  PubMed  Google Scholar 

  47. Dickson RC, Tomlinson RH (1967) Selenium in blood and human tissues. Clin Chim Acta 16:311–321

    Article  CAS  PubMed  Google Scholar 

  48. Falnoga I, Kregar I, Stegnar P, Tuŝek-Znidarič M (1997) Accumulation of mercury and selenium in human thyroid. In: Fischer PWF, L’Abbé MR, Cockell KA, Gibson RS (eds) Trace elements in man and animals-9: proceedings of the ninth international symposium on trace elements in man and animals. NRC Research, Ottawa, Canada, pp 489–490

    Google Scholar 

  49. Katoh Y, Sato T, Yamamoto Y (2002) Determination of multielement concentrations in normal human organs from the Japanese. Biol Trace Elem Res 90:57–70

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the grants CR-80/2002 and WŁ/211/P/F. Work in the JRA’s laboratory is supported by RERAD (Rural and Environmental Research and Analysis Directorate) of the Scottish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Zagrodzki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zagrodzki, P., Nicol, F., Arthur, J.R. et al. Selenoenzymes, Laboratory Parameters, and Trace Elements in Different Types of Thyroid Tumor. Biol Trace Elem Res 134, 25–40 (2010). https://doi.org/10.1007/s12011-009-8454-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8454-2

Keywords

Navigation