Skip to main content
Log in

High-Throughput System for Screening of Cephalosporin C High-Yield Strain by 48-Deep-Well Microtiter Plates

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Improvement of microbial strains for the high-production of industrial products has been the hallmark of all commercial fermentation processes. Strain improvement has been conventionally achieved through mutation and selection. However, most of the screenings were performed in shake flasks, which made the screening procedure very complex, time-consuming, and inefficient. Most mutant spore suspension had no chance to be screened due to the low-throughput of shake flasks and had to be sacrificed. In this paper, in order to get a Cephalosporin C (CPC) high-yield stain, traditional mutagenesis was employed to obtain the mutant library and gave them the equal screening chance by a novel mixture culture method combined with high-throughput screening method. The good correlation of fermentation results between differing-scale cultivations confirmed the feasibility of utilizing the 48-deep microtiter plates as a scale-down tool instead of shake flasks for culturing high-aerobic microbes with long cultivation period. The microbioassay based on the antibacterial activity of CPC against Alcaligenes faecalis was used to select mutants. As a result, the high-yield strain W-6 was successfully screened out and the CPC titer was nearly 50 % higher than that of the parental strain in the shake flask. The CPC production of strain W-6 was further validated in 50 l bioreactor, and the CPC production reached 32.0 g/l, twofold higher than that of the wild strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tollnick, C., Seidel, G., Beyer, M., & Schügerl, K. (2004). Advances in Biochemical Engineering/Biotechnology, 86, 1–45.

    Article  CAS  Google Scholar 

  2. Basch, J., & Chiang, S. J. (1998). Journal of Industrial Microbiology and Biotechnology, 20, 344–353.

    Article  CAS  Google Scholar 

  3. Buchs, J. (2001). Biochemical Engineering Journal, 7, 91–98.

    Article  CAS  Google Scholar 

  4. Duetz, W. A., Rüedi, L., Hermann, R., O’Connor, K., Büchs, J., & Witholt, B. (2000). Applied and Environmental Microbiology, 66, 2641–2646.

    Article  CAS  Google Scholar 

  5. Du Toit, E. A., & Rautenbach, M. (2000). Journal of Microbiological Methods, 42, 159–165.

    Article  Google Scholar 

  6. Kumar, M. S., Kumar, P. M., Sarnaik, H. M., & Sadhukhan, A. K. (2000). Journal of Microbiological Methods, 40, 99–104.

    Article  CAS  Google Scholar 

  7. Betts, J. I., Doig, S. D., & Baganz, F. (2006). Biotechnology Progress, 22(3), 681–688.

    Article  CAS  Google Scholar 

  8. Gao, H., Liu, M., Zhou, X. L., Liu, J. T., et al. (2010). Applied Microbiology and Biotechnology, 85, 1219–1225.

    Article  CAS  Google Scholar 

  9. Kumar, S., Wittmann, C., & Heinzle, E. (2004). Biotechnology Letters, 26, 1–10.

    Article  CAS  Google Scholar 

  10. Xu, Z. N., Shen, W. H., Chen, X. Y., Lin, J. P., & Cen, P. L. (2005). Biotechnology Letters, 27, 1135–1140.

    Article  CAS  Google Scholar 

  11. Duetz, W. A. (2007). Trends in Microbiology, 15(10), 470–475.

    Article  Google Scholar 

  12. Huang, L., Wei, P. L., Zang, R., Xu, Z. N., & Cen, P. L. (2010). Annals of Microbiology, 60, 287–292.

    Article  CAS  Google Scholar 

  13. Isett, K., Geor, H., Herber, W., & Amanullah, A. (2007). Biotechnology and Bioengineering, 98(5), 1017–1028.

    Article  CAS  Google Scholar 

  14. Harms, P., Kostov, Y., French, J. A., Soliman, M., et al. (2006). Biotechnology and Bioengineering, 93, 6–13.

    Article  CAS  Google Scholar 

  15. Chen, A., Chitta, R., Chang, D., & Amanullah, A. (2008). Biotechnology and Bioengineering, 102(1), 148–160.

    Article  Google Scholar 

  16. Doig, S., Pickering, S., Lye, G., & Woodley, J. (2002). Biotechnology and Bioengineering, 80, 42–49.

    Article  CAS  Google Scholar 

  17. Lye, G. J., Shamlou, P. A., Baganz, F., Dalby, P. A., et al. (2003). Trends in Biotechnology, 21, 29–37.

    Article  CAS  Google Scholar 

  18. Duetz, W. A., & Witholt, B. (2001). Biochemical Engineering Journal, 7, 113–115.

    Article  CAS  Google Scholar 

  19. Duetz, W. A., & Witholt, B. (2004). Biochemical Engineering Journal, 17, 181–185.

    Article  CAS  Google Scholar 

  20. Berridge, N. J., & Barret, J. (1952). Journal of General Microbiology, 6, 14–20.

    Article  CAS  Google Scholar 

  21. Hurst, A. (1966). Journal of General Microbiology, 44, 209–220.

    Article  CAS  Google Scholar 

  22. Hermann, R., Lehmann, M., & Büchs, J. (2003). Biotechnology and Bioengineering, 81(2), 178–186.

    Article  CAS  Google Scholar 

  23. Weiss, S., John, G. T., Klimant, I., & Heinzle, E. (2002). Biotechnology Progress, 18(4), 821–830.

    Article  CAS  Google Scholar 

  24. Donadio, S., & Sosio, M. (2003). Combinatorial Chemistry & High Throughput Screening, 6, 489–500.

    Article  CAS  Google Scholar 

  25. Petri, R., & Schmidt, D. C. (2004). Current Opinion in Biotechnology, 15, 298–304.

    Article  CAS  Google Scholar 

  26. Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P., & Cardayre, S. B. (2002). Nature, 415, 644–646.

    Article  CAS  Google Scholar 

  27. Vinci, V. A., Hoerner, T. D., Coffman, A. D., Schimmel, T. G., Dabora, R. L., Kirpekar, A. C., Ruby, C. L., & Stieber, R. W. (1991). Journal of Industrial Microbiology and Biotechnology, 8, 113–120.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a grant from the Major State Basic Research Development Program of China (973 Program), No. 2012CB721006, the National High Technology Research and Development Program of China (863 Program), No. 2006AA020302, National Major Scientific Technological Special Project No. 2012YQ 15008709, and National High Technology Research and Development Program of China (863 Program), No.2012AA021201

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ju Chu or Yuyou Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, J., Chu, J., Hao, Y. et al. High-Throughput System for Screening of Cephalosporin C High-Yield Strain by 48-Deep-Well Microtiter Plates. Appl Biochem Biotechnol 169, 1683–1695 (2013). https://doi.org/10.1007/s12010-013-0095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0095-4

Keywords

Navigation