Skip to main content

Advertisement

Log in

Minimally Invasive Surgery for Valvular Heart Disease

  • Valvular Heart Disease (AS Desai and PT O’Gara, Section Editors)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Valvular heart disease imposes varying degrees of stress on the myocardium, which, untreated, leads to eventual ventricular dysfunction. The pathophysiologic mechanisms by which these lesions act depend not only on the affected valve, but also the degree to which they causes stenosis, regurgitation, or both. The goal of patient treatment is to identify and correct the defect before irreversible ventricular changes have occurred. Historically, the conventional surgical approach for valvular disease was via median sternotomy. Minimally invasive valve surgery (MIVS) refers to alternative surgical techniques, which avoid the trans-sternal approach. The objective is to (1) minimize surgical trauma, (2) reduce blood utilization, and (3) hasten postoperative convalesce. These goals are accomplished through the use of partial sternal, para-sternal, or thoracotomy incisions and can be adapted to robotic technologies. As with all evolving surgical techniques, the therapeutic aim of valve repair or replacement must be performed at or above the same standard of conventional surgery. Outcomes must not be sacrificed for the sake of better cosmesis. In addition, percutaneous catheter-based valvular interventions have seen rapid advances. These emerging technologies have dramatically broadened the therapeutic options, especially for an ever-increasing group of high-risk patients. As expected with all minimally invasive techniques, the major differences in the hard outcomes of mortality and major morbidity are seen in these highest risk groups. However, intermediate and low risk patients receive a tremendous benefit with regard to shortened hospital stay and quicker functional recovery. With the myriad of interventional options now available, the clinical challenge now is how best to individualize the treatment approach to a given patient providing the most durable result in order to alleviate symptoms and preserve myocardial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Bonow RO, Carabello BA, Chatterjee K, et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease) developed in collaboration with the Society of Cardiovascular Anesthesiologists endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J Am Coll Cardiol. 2006;48:1–148.

    Article  Google Scholar 

  2. Lloyd-Jones D, Adams R, Carnethon M, et al. AHA statistical update: Heart disease and stroke statistics-2009 update: A report from the American Heart Association statistics committee and stroke statistics subcommittee. Circulation. 2009;119:480–6.

    Article  PubMed  Google Scholar 

  3. Agmon Y, Khandheria BK, Meissner I, et al. Aortic valve sclerosis and aortic atherosclerosis: different manifestations of the same disease? Insights from a population- based study. J Am Coll Cardiol. 2001;38:827–34.

    Article  PubMed  CAS  Google Scholar 

  4. Aronow WS, Schwartz KS, Koenigsberg M. Correlation of serum lipids, calcium, and phosphorus, diabetes mellitus and history of systemic hypertension with presence or absence of calcified or thickened aortic cusps or root in elderly patients. Am J Cardiol. 1987;59:998–9.

    Article  PubMed  CAS  Google Scholar 

  5. Deutscher S, Rockette HE, Krishnaswami V. Diabetes and hypercholesterolemia among patients with calcific aortic stenosis. J Chronic Dis. 1984;37:407–15.

    Article  PubMed  CAS  Google Scholar 

  6. Otto CM, Lind BK, Kitzman DW, et al. Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. N Engl J Med. 1999;341:142–7.

    Article  PubMed  CAS  Google Scholar 

  7. Otto CM. Aortic stenosis: even mild disease is significant. Eur Heart J. 2004;25:185–7.

    Article  PubMed  Google Scholar 

  8. Schwarz F, Baumann P, Manthey J, et al. The effect of aortic valve replacement on survival. Circulation. 1982;66:1105–10.

    Article  PubMed  CAS  Google Scholar 

  9. Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–607. The cohort B arm of the Partner trial served as the basis for the FDA approval of the Sapien valve for implantation in patients in whom the risk of surgical AVR is prohibitive.

    Article  PubMed  CAS  Google Scholar 

  10. Smith CR, Leon MB, Mack MJ, et al. Transcatheter vs surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011;364:2187–98. Partner cohort A compared TAVI to AVR in high-risk patients. This non-inferiority trial showed similar results between TAVI and AVR with respect to all-cause mortality.

    Article  PubMed  CAS  Google Scholar 

  11. Navia JL, Cosgrove DM. Minimally invasive mitral valve operations. Ann Thorac Surg. 1996;62:1542–4.

    Article  PubMed  CAS  Google Scholar 

  12. Cohn LH, Adams DH, Couper GS, et al. Minimally invasive cardiac valve surgery improves patient satisfaction while reducing costs of cardiac valve replacement and repair. Ann Surg. 1997;226:421–6.

    Article  PubMed  CAS  Google Scholar 

  13. Mihaljevic T, Cohn L, Unic D, et al. One thousand minimally invasive valve operations. Early and late results. Ann Surg. 2004;240:529–34.

    Article  PubMed  Google Scholar 

  14. Freed LA, Levy D, Levine RA, et al. Prevalence and clinical outcome of mitral valve prolapse. N Engl J Med. 1999;341:1–7.

    Article  PubMed  CAS  Google Scholar 

  15. Freed LA, Benjamin EJ, Levy D, et al. Mitral valve prolapse in the general population: the benign nature of echocardiographic features in the Framingham Heart Study. J Am Coll Cardiol. 2002;40:1298–1304.

    Article  PubMed  Google Scholar 

  16. Rosen SE, Borer JS, Hochreiter C, et al. Natural history of asymptomatic/minimally symptomatic patients with severe mitral regurgitation secondary to mitral valve prolapse and normal right and left ventricular performance. Am J Cardiol. 1994;74:374–80.

    Article  PubMed  CAS  Google Scholar 

  17. Nishimura RA, McGoon MD, Shub C, et al. Echocardiographically documented mitral-valve prolapse: long-term follow-up of 237 patients. N Engl J Med. 1985;313:1305–9.

    Article  PubMed  CAS  Google Scholar 

  18. Chesler E, King RA, Edwards JE. The myxomatous mitral valve and sudden death. Circulation. 1983;67:632–9.

    Article  PubMed  CAS  Google Scholar 

  19. Grigioni F, Enriquez-Sarano M, Ling LH, et al. Sudden death in mitral regurgitation due to flail leaflet. J Am Coll Cardiol. 1999;34:2078–85.

    Article  PubMed  CAS  Google Scholar 

  20. Bonow RO, Carabello BA, Chatterjee K, et al. 2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52:1–142.

    Article  Google Scholar 

  21. Gundry SR, Shattuck OH, Razzouk AJ, et al. Facile minimally invasive cardiac surgery via ministernotomy. Ann Thorac Surg. 1998;65:1100–4.

    Article  PubMed  CAS  Google Scholar 

  22. Greelish JP, Cohn LH, Leacche M, et al. Minimally invasive mitral valve repair suggests earlier operations for mitral valve disease. J Thorac Cardiovasc Surg. 2003;126:365–71.

    Article  PubMed  Google Scholar 

  23. Grossi EA, Galloway AC, LaPietra A, et al. Minimally invasive mitral valve surgery: a 6-year experience with 714 patients. Ann Thorac Surg. 2002;74:660–4.

    Article  PubMed  Google Scholar 

  24. Dogan S, Aybek T, Risteski PS, et al. Minimally invasive port access vs conventional mitral valve surgery: prospective randomized study. Ann Thorac Surg. 2005;79:492–8.

    Article  PubMed  Google Scholar 

  25. Chitwood Jr WR, Elbeery JR, Moran JM. Minimally invasive mitral valve repair using transthoracic aortic occlusion. Ann Thorac Surg. 1997;63:1477–9.

    Article  PubMed  Google Scholar 

  26. Grossi EA, LaPietra A, Applebaum RM, et al. Case report of robotic instrument-enhanced mitral valve surgery. J Thorac Cardiovasc Surg. 2000;120:1169–71.

    Article  PubMed  CAS  Google Scholar 

  27. Rodriguez E, Nifong LW, Chu MW, et al. Robotic mitral valve repair for anterior leaflet and bileaflet prolapse. Ann Thorac Surg. 2008;85:438–44.

    Article  PubMed  Google Scholar 

  28. Colvin SB, Galloway AC, Ribakove G, et al. Port-Access mitral valve surgery: summary of results. J Card Surg. 1998;13:286–9.

    Article  PubMed  CAS  Google Scholar 

  29. Chitwood Jr WR, Elbeery JR, Chapman WH, et al. Video-assisted minimally invasive mitral valve surgery: the “micro- mitral” operation. J Thorac Cardiovasc Surg. 1997;113:413–4.

    Article  PubMed  Google Scholar 

  30. Fann JI, Pompili MF, Stevens JH, et al. Port-access cardiac operations with cardioplegic arrest. Ann Thorac Surg. 1997;63(6 Suppl):S35–9.

    Article  PubMed  CAS  Google Scholar 

  31. Reichenspurner H, Detter C, Deuse T, et al. Video and robotic-assisted minimally invasive mitral valve surgery: a comparison of the port-access and transthoracic clamp techniques. Ann Thorac Surg. 2005;79:485–91.

    Article  PubMed  Google Scholar 

  32. Nifong L, Chitwood WR, Pappas PS, et al. Robotic mitral valve surgery: a United States multicenter trial. J Thorac Cardiovasc Surg. 2005;129:1395–1404.

    Article  PubMed  Google Scholar 

  33. Chitwood WR. Current status of endoscopic and robotic mitral valve surgery. Ann Thorac Surg. 2005;79:2248–53.

    Article  Google Scholar 

  34. Umakanthan R, Leacche M, Petracek MR, et al. Safety of minimally invasive mitral valve surgery without aortic cross-clamp. Ann Thorac Surg. 2008;85:1544–50.

    Article  PubMed  Google Scholar 

  35. Feldman T, Foster E, Glower DD, et al. Percutaneous repair or surgery for mitral regurgitation. N Engl J Med. 2011;364:1395–1406.

    Article  PubMed  CAS  Google Scholar 

  36. Thourani VH, Weintraub WS, Craver JM, et al. Influence of concomitant CABG and urgent/emergent status on mitral valve replacement surgery. Ann Thorac Surg. 2000;70:778–83.

    Article  PubMed  CAS  Google Scholar 

  37. Byrne JG, Leacche M, Unic D, et al. Staged initial percutaneous coronary intervention followed by valve surgery (‘hybrid approach’) for patients with complex coronary and valve disease. J Am Coll Cardiol. 2005;45:14–8.

    Article  PubMed  Google Scholar 

  38. Umakanthan R, Leacche M, Petracek MR, et al. Combined PCI and minimally invasive heart valve surgery for high-risk patients. Curr Treat Options Cardiovasc Med. 2009;11:492–8. Describes a hybrid approach for the management of combined coronary artery and valvular heart disease for a high-risk patient population.

    Article  PubMed  Google Scholar 

  39. Carpentier A, Loulemet D, Le Bret E, et al. Chirugie a coeur ouvert par video-thoracotomie-premeier cas (valvuloplastie mitrale) opere avec success [First open heart operation (mitral valvuloplasty) under videosurgery through a minithoracotomy]. C R Acad Sci III. 1996;319:219–23.

    PubMed  CAS  Google Scholar 

  40. Mohr FW, Falk V, Diegeler A, et al. Minimally invasive port-access mitral valve surgery. J Thorac Cardiovasc Surg. 1998;115:567–74.

    Article  PubMed  CAS  Google Scholar 

  41. Nifong LW, Chirwood WR, Pappas PS, et al. Robotic mitral valve surgery: A United States multicenter trial. J Thorac Cardiovasc Surg. 2005;129:1395–1404.

    Article  PubMed  Google Scholar 

  42. Chitwood WR, Rodriguez E, Chu MW, et al. Robotic mitral valve repairs in 300 patients: a single-center experience. J Thorac Cardiovasc Surg. 2008;136:436–41.

    Article  PubMed  Google Scholar 

  43. Mihaljevic T, Jarrett CM, Gillinov AM, et al. Robotic repair or posterior mitral valve prolapse vs conventional approaches: Potential realized. J Thorac Cardiovasc Surg. 2011;141:72–80.

    Article  PubMed  Google Scholar 

  44. Kam JK, Cooray SD, Kam JK, et al. A cost-analysis study of robotic vs conventional mitral valve repair. Heart Lung Circ. 2010;19:413–8.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Byrne MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuadrado, D.G., Leacche, M. & Byrne, J.G. Minimally Invasive Surgery for Valvular Heart Disease. Curr Treat Options Cardio Med 14, 584–593 (2012). https://doi.org/10.1007/s11936-012-0211-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-012-0211-8

Keywords

Navigation