Skip to main content

Advertisement

Log in

Integrated imaging of cardiac anatomy, physiology, and viability

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Technologic developments in imaging will have a significant impact on cardiac imaging over the next decade. These advances will permit more detailed assessment of cardiac anatomy, complex assessment of cardiac physiology, and integration of anatomic and physiologic data. The distinction between anatomic and physiologic imaging is important. For assessing patients with known or suspected coronary artery disease, physiologic and anatomic imaging data are complementary. The strength of anatomic imaging rests in its ability to detect the presence of disease, whereas physiologic imaging techniques assess the impact of disease, such as whether a coronary atherosclerotic lesion limits myocardial blood flow. Research indicates that physiologic data are more prognostically important than anatomic data, but both may be important in patient management decisions. Integrated cardiac imaging is an evolving field, with many potential indications. These include assessment of coronary stenosis, myocardial viability, anatomic and physiologic characterization of atherosclerotic plaque, and advanced molecular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Caracciolo EA, Davis KB, Sopko G, et al.: Comparison of surgical and medical group survival in patients with left main equivalent coronary artery disease. Long-term CASS experience. Circulation 1995, 91:2335–2344.

    PubMed  CAS  Google Scholar 

  2. Califf RM, Armstrong PW, Carver JR, et al.: 27th Bethesda Conference: matching the intensity of risk factor management with the hazard for coronary disease events. Task Force 5. Stratification of patients into high, medium and low risk subgroups for purposes of risk factor management. J Am Coll Cardiol 1996, 27:1007–1019.

    Article  PubMed  CAS  Google Scholar 

  3. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA: Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 2005, 46:552–557.

    Article  PubMed  Google Scholar 

  4. Meijboom WB, van Mieghem CA, Mollet NR, et al.: 64-slice computed tomography coronary angiography in patients with high, intermediate, or low pretest probability of significant coronary artery disease. J Am Coll Cardiol 2007, 50:1469–1475.

    Article  PubMed  Google Scholar 

  5. Guerci AD: The prognostic accuracy of coronary calcification. J Am Coll Cardiol 2007, 49:1871–1873.

    Article  PubMed  Google Scholar 

  6. Budoff MJ, Shaw LJ, Liu ST, et al.: Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol 2007, 49:1860–1870.

    Article  PubMed  Google Scholar 

  7. Min JK, Shaw LJ, Devereux RB, et al.: Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol 2007, 50:1161–1170.

    Article  PubMed  Google Scholar 

  8. Pundziute G, Schuijf JD, Jukema JW, et al.: Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease. J Am Coll Cardiol 2007, 49:62–70.

    Article  PubMed  Google Scholar 

  9. Brown KA: Prognostic value of myocardial perfusion imaging: state of the art and new developments. J Nucl Cardiol 1996, 3(6 Pt 1):516–537.

    Article  PubMed  CAS  Google Scholar 

  10. Iskander S, Iskandrian AE: Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol 1998, 32:57–62.

    Article  PubMed  CAS  Google Scholar 

  11. Mowatt G, Brazzelli M, Gemmell H, et al.: Systematic review of the prognostic effectiveness of SPECT myocardial perfusion scintigraphy in patients with suspected or known coronary artery disease and following myocardial infarction. Nucl Med Commun 2005, 26:217–229.

    Article  PubMed  Google Scholar 

  12. Hachamovitch R, Berman DS, Shaw LJ, et al.: Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 1998, 97:535–543. [Published erratum appears in Circulation 1998, 98:190.]

    PubMed  CAS  Google Scholar 

  13. Vanzetto G, Ormezzano O, Fagret D, et al.: Long-term additive prognostic value of thallium-201 myocardial perfusion imaging over clinical and exercise stress test in low to intermediate risk patients: study in 1137 patients with 6-year follow-up. Circulation 1999, 100:1521–1527.

    PubMed  CAS  Google Scholar 

  14. Iskandrian AS, Chae SC, Heo J, et al.: Independent and incremental prognostic value of exercise single-photon emission computed tomographic (SPECT) thallium imaging in coronary artery disease. J Am Coll Cardiol 1993, 22:665–670.

    PubMed  CAS  Google Scholar 

  15. Kamal AM, Fattah AA, Pancholy S, et al.: Prognostic value of adenosine single-photon emission computed tomographic thallium imaging in medically treated patients with angiographic evidence of coronary artery disease. J Nucl Cardiol 1994, 1:254–261.

    Article  PubMed  CAS  Google Scholar 

  16. Brown KA, Rowen M: Prognostic value of a normal exercise myocardial perfusion imaging study in patients with angiographically significant coronary artery disease. Am J Cardiol 1993, 71:865–867.

    Article  PubMed  CAS  Google Scholar 

  17. Abdel Fattah A, Kamal AM, Pancholy S, et al.: Prognostic implications of normal exercise tomographic thallium images in patients with angiographic evidence of significant coronary artery disease. Am J Cardiol 1994, 74:769–771.

    Article  PubMed  CAS  Google Scholar 

  18. Hachamovitch R, Hayes SW, Friedman JD, et al.: Stress myocardial perfusion single-photon emission computed tomography is clinically effective and cost effective in risk stratification of patients with a high likelihood of coronary artery disease (CAD) but no known CAD. J Am Coll Cardiol 2004, 43:200–208.

    Article  PubMed  Google Scholar 

  19. Gould KL: Identifying and measuring severity of coronary artery stenosis. Quantitative coronary arteriography and positron emission tomography. Circulation 1988, 78:237–245.

    PubMed  CAS  Google Scholar 

  20. Di Carli M, Czernin J, Hoh CK, et al.: Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995, 91:1944–1951.

    PubMed  Google Scholar 

  21. Zeiher AM, Krause T, Schachinger V, et al.: Impaired endothelium-dependent vasodilation of coronary resistance vessels is associated with exercise-induced myocardial ischemia. Circulation 1995, 91:2345–2352.

    PubMed  CAS  Google Scholar 

  22. Soman P, Dave DM, Udelson JE, et al.: Vascular endothelial dysfunction is associated with reversible myocardial perfusion defects in the absence of obstructive coronary artery disease. J Nucl Cardiol 2006, 13:756–760.

    Article  PubMed  Google Scholar 

  23. Meijboom WB, Van Mieghem CA, van Pelt N, et al.: Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 2008, 52:636–643.

    Article  PubMed  Google Scholar 

  24. Chareonthaitawee P, Gersh BJ, Araoz PA, Gibbons RJ: Revascularization in severe left ventricular dysfunction: the role of viability testing. J Am Coll Cardiol 2005, 46:567–574.

    Article  PubMed  Google Scholar 

  25. Underwood SR, Bax JJ, vom Dahl J, et al.: Imaging techniques for the assessment of myocardial hibernation. Report of a Study Group of the European Society of Cardiology. Eur Heart J 2004, 25:815–836. (Published erratum appears in Eur Heart J 2004, 25:2176.)

    Article  PubMed  Google Scholar 

  26. Perrone-Filardi P, Pace L, Prastaro M, et al.: Assessment of myocardial viability in patients with chronic coronary artery disease. Rest-4-hour-24-hour 201Tl tomography versus dobutamine echocardiography. Circulation 1996, 94:2712–2719.

    PubMed  CAS  Google Scholar 

  27. Di Carli MF, Davidson M, Little R, et al.: Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994, 73:527–533.

    Article  PubMed  Google Scholar 

  28. Eitzman D, al-Aouar Z, Kanter HL, et al.: Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992, 20:559–565.

    Article  PubMed  CAS  Google Scholar 

  29. Lee KS, Marwick TH, Cook SA, et al.: Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation 1994, 90:2687–2694.

    PubMed  CAS  Google Scholar 

  30. Desideri A, Cortigiani L, Christen AI, et al.: The extent of perfusion-F18-fluorodeoxyglucose positron emission tomography mismatch determines mortality in medically treated patients with chronic ischemic left ventricular dysfunction. J Am Coll Cardiol 2005, 46:1264–1269.

    Article  PubMed  Google Scholar 

  31. Marwick TH, Nemec JJ, Lafont A, et al.: Prediction by postexercise fluoro-18 deoxyglucose positron emission tomography of improvement in exercise capacity after revascularization. Am J Cardiol 1992, 69:854–859.

    Article  PubMed  CAS  Google Scholar 

  32. Di Carli MF, Asgarzadie F, Schelbert HR, et al.: Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 1995, 92:3436–3444.

    PubMed  Google Scholar 

  33. Weinsaft JW, Klem I, Judd RM: MRI for the assessment of myocardial viability. Cardiol Clin 2007, 25:35–56.

    Article  PubMed  Google Scholar 

  34. Kopp AF, Heuschmid M, Reimann A, et al.: Evaluation of cardiac function and myocardial viability with 16- and 64-slice multidetector computed tomography. Eur Radiol 2005, 15(Suppl 4):D15–D20.

    PubMed  Google Scholar 

  35. Namdar M, Hany TF, Koepfli P, et al.: Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J Nucl Med 2005, 46:930–935.

    PubMed  Google Scholar 

  36. Schuijf JD, Wijns W, Jukema JW, et al.: Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol 2006, 48:2508–2514.

    Article  PubMed  Google Scholar 

  37. Di Carli MF, Dorbala S, Curillova Z, et al.: Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J Nucl Cardiol 2007, 14:799–809.

    Article  PubMed  Google Scholar 

  38. Rispler S, Keidar Z, Ghersin E, et al.: Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol 2007, 49:1059–1067.

    Article  PubMed  Google Scholar 

  39. Wang L, Jerosch-Herold M, Jacobs DR Jr, et al.: Coronary artery calcification and myocardial perfusion in asymptomatic adults: the MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 2006, 48:1018–1026.

    Article  PubMed  CAS  Google Scholar 

  40. Schenker MP, Dorbala S, Hong EC, et al.: Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation 2008, 117:1693–1700.

    Article  PubMed  Google Scholar 

  41. Di Carli MF, Hachamovitch R: New technology for noninvasive evaluation of coronary artery disease. Circulation 2007, 115:1464–1480.

    Article  PubMed  Google Scholar 

  42. Dickfeld T, Lei P, Dilsizian V, et al.: Integration of three-dimensional scar maps for ventricular tachycardia ablation with positron emission tomography-computed tomography [abstract]. J Am Coll Cardiol Img 2008, 1:73–82.

    Google Scholar 

  43. Scholte AJ, Schuijf JD, Kharagjitsingh AV, et al.: Different manifestations of coronary artery disease by stress SPECT myocardial perfusion imaging, coronary calcium scoring, and multislice CT coronary angiography in asymptomatic patients with type 2 diabetes mellitus. J Nucl Cardiol 2008, 15:503–509.

    Article  PubMed  Google Scholar 

  44. Schroeder S, Kopp AF, Baumbach A, et al.: Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 2001, 37:1430–1435.

    Article  PubMed  CAS  Google Scholar 

  45. Henneman MM, Schuijf JD, Pundziute G, et al.: Noninvasive evaluation with multislice computed tomography in suspected acute coronary syndrome: plaque morphology on multislice computed tomography versus coronary calcium score. J Am Coll Cardiol 2008, 52:216–222.

    Article  PubMed  Google Scholar 

  46. Motoyama S, Kondo T, Sarai M, et al.: Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 2007, 50:319–326.

    Article  PubMed  Google Scholar 

  47. Tawakol A, Migrino RQ, Hoffmann U, et al.: Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol 2005, 12:294–301.

    Article  PubMed  Google Scholar 

  48. Tawakol A, Migrino RQ, Bashian GG, et al.: In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006, 48:1818–1824.

    Article  PubMed  Google Scholar 

  49. Aziz K, Berger K, Claycombe K, et al.: Noninvasive detection and localization of vulnerable plaque and arterial thrombosis with computed tomography angiography/positron emission tomography. Circulation 2008, 117:2061–2070.

    Article  PubMed  Google Scholar 

  50. Paulmier B, Duet M, Khayat R, et al.: Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events. J Nucl Cardiol 2008, 15:209–217.

    Article  PubMed  Google Scholar 

  51. Nahrendorf M, Zhang H, Hembrador S, et al.: Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 2008, 117:379–387.

    Article  PubMed  CAS  Google Scholar 

  52. Wagner B, Anton M, Nekolla SG, et al.: Noninvasive characterization of myocardial molecular interventions by integrated positron emission tomography and computed tomography. J Am Coll Cardiol 2006, 48:2107–2115.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Arrighi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arrighi, J.A. Integrated imaging of cardiac anatomy, physiology, and viability. Curr Cardiol Rep 11, 125–132 (2009). https://doi.org/10.1007/s11886-009-0019-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-009-0019-7

Keywords

Navigation