Skip to main content

Advertisement

Log in

Is Atherosclerosis Regression a Realistic Goal of Statin Therapy and What Does That Mean?

  • Statin Drugs (MB Clearfield, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Atherosclerosis is a complex disease associated with aberrant lipoprotein metabolism and leukocyte infiltration into arterial tissue that leads to cardiovascular diseases. Statins have emerged as among the most effective means of reducing the risk of cardiovascular disease in both primary and secondary prevention settings. Statins are the only pharmacological agents that have been consistently shown to have antiatherosclerotic effects. Statins slow atherosclerosis progression and can even induce atherosclerosis regression. Technological advances in imaging modalities to assess atherosclerosis have made possible direct visualization of atherosclerotic plaques and estimation of plaque burden and permit the evaluation of the impact of medical therapies on the natural history of plaque progression. However, owing to several limiting factors as discussed in this review, presently atherosclerotic plaque progression cannot be used as a therapeutic goal for reduction of the risk of cardiovascular disease. In this review we discuss the evidence for the use of imaging modalities in the detection of atherosclerotic plaque regression, the effects of statins on the atherosclerotic process, and the clinical relevance of atherosclerosis regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rader DJ, Daugherty A. Translating molecular discoveries into new therapies for atherosclerosis. Nature. 2008;451:904–13.

    Article  PubMed  CAS  Google Scholar 

  2. Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: global burden of disease study. Lancet. 1997;349:1436–42.

    Article  PubMed  CAS  Google Scholar 

  3. Beaglehole R, Bonita R. Global public health: a scorecard. Lancet. 2008;372:1988–96.

    Article  PubMed  Google Scholar 

  4. Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med. 1995;333:1301–7.

    Article  PubMed  CAS  Google Scholar 

  5. Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344:1383–9.

  6. Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA. 1998;279:1615–22.

    Article  PubMed  CAS  Google Scholar 

  7. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med. 1996;335:1001–9.

    Article  PubMed  CAS  Google Scholar 

  8. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomized placebo-controlled trial. Lancet. 2002;360:7–22.

    Article  Google Scholar 

  9. Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111:3481–8.

    Article  PubMed  Google Scholar 

  10. Sipahi I, Tuzcu EM. Candidate mechanisms for regression of coronary atherosclerosis with high-dose statins: insight from intravascular ultrasonography trials. Am J Cardiovasc Drugs. 2008;8(6):365–71.

    Article  PubMed  CAS  Google Scholar 

  11. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.

    Article  PubMed  CAS  Google Scholar 

  12. Vogel RA. Cholesterol lowering and endothelial function. Am J Med. 1999;107:479–87.

    Article  PubMed  CAS  Google Scholar 

  13. Zaman AG, Helft G, Worthley SG, Badimon JJ. The role of plaque rupture and thrombosis in coronary artery disease. Atherosclerosis. 2000;149:251–66.

    Article  PubMed  CAS  Google Scholar 

  14. Libby P. Changing concepts of atherogenesis. J Intern Med. 2000;247:349–58.

    Article  PubMed  CAS  Google Scholar 

  15. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.

    Article  PubMed  CAS  Google Scholar 

  16. Glagov S, Weisneberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.

    Article  PubMed  CAS  Google Scholar 

  17. Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, et al. Pravastatin or atorvastatin evaluation and infection therapy-thrombolysis in myocardial infarction 22 investigators. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350:1495–504.

    Article  PubMed  CAS  Google Scholar 

  18. Klein LW. Atherosclerosis regression, vascular remodeling, and plaque stabilization. J Am Coll Cardiol. 2007;49:271–3.

    Article  PubMed  Google Scholar 

  19. Shanmugam N, Román-Rego A, Ong P, Kaski JC. Atherosclerotic plaque regression: fact or fiction? Cardiovasc Drugs Ther. 2010;24(4):311–7. This article discusses the evaluation of plaque regression and its effect on survival.

    Article  PubMed  Google Scholar 

  20. Williams KJ, Feig JE, Fisher EA. Rapid regression of atherosclerosis: insights from the clinical and experimental literature. Nat Clin Pract Cardiovasc Med. 2008;5:91–102.

    Article  PubMed  CAS  Google Scholar 

  21. Ortego M, Bustos C, Hernández-Presa MA, Tuñón J, Díaz C, Hernández G, et al. Atorvastatin reduces NF-kappaB activation and chemokine expression in vascular smooth muscle cells and mononuclear cells. Atherosclerosis. 1999;147:253–61.

    Article  PubMed  CAS  Google Scholar 

  22. Tardif JC, Lesage F, Harel F, Romeo P, Pressacco J. Imaging biomarkers in atherosclerosis trials. Circ Cardiovasc Imaging. 2011;4:319–33. This review discusses various imaging modalities for detection of atherosclerosis, their application, strengths, and limitations.

    Article  PubMed  Google Scholar 

  23. Chambless LE, Zhong MM, Arnett D, Folsom AR, Riley WA, Heiss G. Variability in B-mode ultrasound measurements in the atherosclerosis risk communities (ARIC) study. Ultrasound Med Biol. 1996;22(5):545–54.

    Article  PubMed  CAS  Google Scholar 

  24. Geroulakos G, O’Gorman DJ, Kalodiki E, Sheridan DJ, Nicolaides AN. The carotid intima-media thickness as a marker of the presence of severe symptomatic coronary artery disease. Eur Heart J. 1994;15:781–5.

    PubMed  CAS  Google Scholar 

  25. Burke GL, Evans GW, Riley WA, Sharrett AR, Howard G, Barnes RW, et al. Arterial wall thickness is associated with prevalent cardiovascular disease in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Stroke. 1995;26:386–91.

    Article  PubMed  CAS  Google Scholar 

  26. Bots ML, Hoes AW, Koudstaal PJ, Hofman A, Grobbee DE. Common carotid intima-media thickness and risk of stroke and myocardial infarction. Circulation. 1997;96:1432–7.

    Article  PubMed  CAS  Google Scholar 

  27. O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson Jr SK. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. N Engl J Med. 1999;340:14–22.

    Article  PubMed  Google Scholar 

  28. Touboul PJ, Elbaz A, Koller C, for the GÉNIC Investigators, et al. Common carotid artery intima–media thickness and brain infarction: The Étude du Profile Génétique de l’Infarctus Cérébral (GÉNIC) case–control study. Circulation. 2000;102(3):313–8.

    Article  PubMed  CAS  Google Scholar 

  29. Touboul PJ, Hennerici MG, Meairs S, et al. Mannheim carotid intima-media thickness consensus (2004–2006). An update on behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis. 2007;23(8):75–80.

    Article  PubMed  Google Scholar 

  30. Stein JH, Korcarz CE, Hurst RT, et al. American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr. 2008;21(10):93–112.

    PubMed  Google Scholar 

  31. Amarenco P, Labreuche J, Lavallee P, Touboul PJ. Statins in stroke prevention and carotid atherosclerosis. Stroke. 2004;35(12):2902–9.

    Article  PubMed  CAS  Google Scholar 

  32. Bedi US, Singh M, Singh PP, Bhuriya R, Bahekar A, Molnar J, et al. Effects of statins on progression of carotid atherosclerosis as measured by carotid intimal–medial thickness: a meta-analysis of randomized controlled trials. J Cardiovasc Pharmacol Ther. 2010;15(3):268–73.

    Article  PubMed  CAS  Google Scholar 

  33. Mannami T, Konishi M, Baba S, Nishi N, Terao A. Prevalence of asymptomatic carotid atherosclerotic lesions detected by high-resolution ultrasonography and its relation to cardiovascular high risk factors in the general population of a Japanese city: the Suita study. Stroke. 1997;28(3):518–25.

    Article  PubMed  CAS  Google Scholar 

  34. Crouse JR, Raichlen JS, Riley WA, for the METEOR study group, et al. Effect of rosuvastatin on progression of carotid intima-media thickness in low-risk individuals with subclinical atherosclerosis. The METEOR Trial. JAMA. 2007;297(6):1344–53.

    Article  PubMed  CAS  Google Scholar 

  35. Groot E, Jukema JW, van Swijndregt ADM, et al. B-mode ultrasound assessment of pravastatin treatment effect on carotid and femoral artery walls and its correlations with coronary arteriographic findings: a report of the Regression Growth Evaluation Statin Study (REGRESS). J Am Coll Cardiol. 1998;31(4):1561–7.

    Article  PubMed  Google Scholar 

  36. Hodis HN, Mack WJ, LaBree L, et al. Reduction in carotid arterial wall thickness using lovastatin and dietary therapy: a randomized, controlled clinical trial. Ann Intern Med. 1996;24(6):548–56.

    Google Scholar 

  37. Furberg CD, Adams Jr HP, Applegate WB, for the Asymptomatic Carotid Artery Progression Study (ACAPS) Research Group, et al. Effect of lovastatin on early carotid atherosclerosis and cardiovascular events. Circulation. 1994;90(4):1679–87.

    Article  PubMed  CAS  Google Scholar 

  38. Smilde TJ, van Wissen S, Wollersheim H, Trip MD, Kastelein JJP, Stalanhoef AFH. Effects of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolemia (ASAP). Lancet. 2001;357(8):577–81.

    Article  PubMed  CAS  Google Scholar 

  39. Taylor AJ, Kent SM, Flaherty PJ, Coyle LC, Markwood TT, Vernalis MN. Arterial biology for the investigation of the treatment effects of reducing cholesterol: a randomized trial comparing the effects of atorvastatin and pravastatin on carotid intima medial thickness (ARBITER). Circulation. 2002;106(3):2055–60.

    Article  PubMed  CAS  Google Scholar 

  40. MacMahon S, Sharpe N, Gamble G, et al. Effects of lowering average or below-average cholesterol levels on the progression of carotid atherosclerosis: results of the LIPID Atherosclerosis Substudy. Circulation. 1998;97(8):1784–90.

    Article  PubMed  CAS  Google Scholar 

  41. Hedblad B, Wikstrand J, Janzon L, Wedel H, Berglund G. Low-dose metoprolol CR/XL and fluvastatin slow progression of carotid intima-media thickness: main results from the β-Blocker Cholesterol-Lowering Asymptomatic Plaque Study (BCAPS). Circulation. 2001;103(1):1721–6.

    Article  PubMed  CAS  Google Scholar 

  42. Yu CM, Zhang Q, Lam L, et al. Comparison of intensive and low-dose atorvastatin therapy in the reduction of carotid intimal–medial thickness in patients with coronary heart disease. Heart. 2007;93(7):933–9.

    Article  PubMed  CAS  Google Scholar 

  43. Mercuri M, Bond MG, Sirtori CR, et al. Pravastatin reduces carotid intima–media thickness progression in an asymptomatic hypercholesterolemic Mediterranean population: the Carotid Atherosclerosis Italian Ultrasound Study. Am J Med. 1996;101:627–34.

    Article  PubMed  CAS  Google Scholar 

  44. Nissen SE, Yock P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation. 2001;103:604–16.

    Article  PubMed  CAS  Google Scholar 

  45. Nissen SE. Application of intravascular ultrasound to characterize coronary artery disease and assess the progression or regression of atherosclerosis. Am J Cardiol. 2002;89:24B–31B.

    Article  PubMed  Google Scholar 

  46. Nissen SE, Nicholls SJ, Sipahi I, Libby P, Raichlen JS, Ballantyne CM, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295:1556–65.

    Article  PubMed  CAS  Google Scholar 

  47. Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39:604–9.

    Article  PubMed  Google Scholar 

  48. Aoki J, Rodríguez-Granillo GA, Serruys PW. Emergent strategies in interventional cardiology. Rev Esp Cardiol. 2005;58:962–73.

    Article  PubMed  Google Scholar 

  49. Nissen SE, Tuzcu EM, Schoebnhagen P, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 2004;291:1071–80.

    Article  PubMed  CAS  Google Scholar 

  50. Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290:2292–300.

    Article  PubMed  CAS  Google Scholar 

  51. Okazaki S, Yokoyama T, Miyauchi K, et al. Early statin treatment in patients with acute coronary syndrome: demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event: the ESTABLISH Study. Circulation. 2004;110:1061–8.

    Article  PubMed  CAS  Google Scholar 

  52. Nissen SE, Tuzcu EM, Libby P, et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA. 2004;292:2217–25.

    Article  PubMed  CAS  Google Scholar 

  53. Nicholls SJ, Tuzcu EM, Sipahi I, et al. Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. JAMA. 2007;297:499–508.

    Article  PubMed  CAS  Google Scholar 

  54. Santos RD, Nasir K. Insights into atherosclerosis from invasive and non-invasive imaging studies: Should we treat subclinical atherosclerosis? Atherosclerosis. 2009;205(2):349–56. This article discusses the treatment of subclinical atherosclerosis.

    Article  PubMed  CAS  Google Scholar 

  55. Bedi U, Singh M, Singh P, Molnar J, Khosla S, Arora R. Effects of statins on progression of coronary artery disease as measured by intravascular ultrasound. J Clin Hypertens (Greenwich). 2011;13(7):492–6.

    Article  Google Scholar 

  56. Jensen LO, Thayssen P, Pedersen KE, et al. Regression of coronary atherosclerosis by simvastatin: a serial intravascular ultrasound study. Circulation. 2004;110:265–70.

    Article  PubMed  CAS  Google Scholar 

  57. Schartl M, Bocksch W, Koschyk DH, et al. Use of intravascular ultrasound to compare effects of different strategies of lipid-lowering therapy on plaque volume and composition in patients with coronary artery disease. Circulation. 2001;104:387–92.

    Article  PubMed  CAS  Google Scholar 

  58. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med. 2005;352:29–38.

    Article  PubMed  CAS  Google Scholar 

  59. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.

    Article  PubMed  CAS  Google Scholar 

  60. Callister TQ, Cooil B, Raya SP, Lippolis NJ, Russo DJ, Raggi P. Coronary artery disease: improved reproducibility of calcium scoring with and electron-beam CT volumetric method. Radiology. 1998;208:807–14.

    PubMed  CAS  Google Scholar 

  61. Detrano R, Tang W, Kang X, Mahaisavariya P, McCrae M, Garner D, et al. Accurate coronary calcium phosphate mass measurements from electron beam computed tomograms. Am J Card Imaging. 1995;3:167–73.

    Google Scholar 

  62. Hoff JA, Daviglus ML, Chomka EV, Krainik AJ, Sevrukow A, Kondos GT. Conventional coronary artery disease risk factors and coronary artery calcium detected by electron beam tomography in 30,908 healthy individuals. Ann Epidemiol. 2003;13:163–9.

    Article  PubMed  Google Scholar 

  63. Secci A, Wong N, Tang W, Wang S, Doherty T, Detrano R. Electron beam computed tomographic coronary calcium as a predictor of coronary events. Circulation. 1997;96:1122–9.

    Article  PubMed  CAS  Google Scholar 

  64. Pletcher MJ, Tice JA, Pignone M, Browner WS. Using the coronary artery calcium score to predict coronary heart disease events: a systematic review and meta-analysis. Arch Intern Med. 2004;164:1285–92.

    Article  PubMed  Google Scholar 

  65. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology. 2003;228:826–33.

    Article  PubMed  Google Scholar 

  66. Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA. 2004;291:210–5.

    Article  PubMed  CAS  Google Scholar 

  67. Yeboah J, McClelland RL, Polonsky TS, Burke GL, Sibley CT, O’Leary D, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012;308(8):788–95. This article compares the risk markers for improvement of risk stratification in intermediate-risk individuals.

    Article  PubMed  CAS  Google Scholar 

  68. Callister TQ, Raggi P, Cooil B, Lippolis NJ, Russo DJ. Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med. 1998;339:1972–8.

    Article  PubMed  CAS  Google Scholar 

  69. Schmermund A, Erbel R. Unstable coronary plaque and its relation to coronary calcium. Circulation. 2001;104:1682–7.

    Article  PubMed  CAS  Google Scholar 

  70. Budoff MJ, Raggi P. Coronary artery disease progression assessed by electron-beam computed tomography. Am J Cardiol. 2001;88:46E–50E.

    Article  PubMed  CAS  Google Scholar 

  71. Achenbach S, Ropers D, Pohle K, Leber A, Thilo C, Knez A, et al. Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation. Circulation. 2002;106:1077–82.

    Article  PubMed  CAS  Google Scholar 

  72. Schmermund A, Achenbach S, Budde T, Buziashvili Y, Förster A, Friedrich G, et al. Effect of intensive versus standard lipid-lowering treatment with atorvastatin on the progression of calcified coronary atherosclerosis over 12 months: a multicenter, randomized, double-blind trial. Circulation. 2006;113:427–37.

    Article  PubMed  CAS  Google Scholar 

  73. Schoenhagen P, Tuzcu EM, Stillman AE, Moliterno DJ, Halliburton SS, Kuzmiak SA, et al. Non-invasive assessment of plaque morphology and remodeling in mildly stenotic coronary segments: comparison of 16-slice computed tomography and intravascular ultrasound. Coron Artery Dis. 2003;14:459–62.

    Article  PubMed  Google Scholar 

  74. Achenbach S, Ropers D, Hoffmann U, MacNeill B, Baum U, Pohle K, et al. Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol. 2004;43:842–7.

    Article  PubMed  Google Scholar 

  75. Leber AW, Knez A, Becker A, Becker C, von Ziegler F, Nikolaou K, et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol. 2004;43:1241–7.

    Article  PubMed  Google Scholar 

  76. Achenbach S, Moselewski F, Ropers D, Ferencik M, Hoffmann U, MacNeill B, et al. Improved detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation. 2004;109:14–7.

    Article  PubMed  Google Scholar 

  77. Pundziute G, Schuijf JD, Jukema JW, Boersma E, de Roos A, van der Wall EE, et al. Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease. J Am Coll Cardiol. 2007;49:62–70.

    Article  PubMed  Google Scholar 

  78. Min JK, Shaw LJ, Devereux RB, Okin PM, Weinsaft JW, Russo DJ, et al. Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol. 2007;50:1161–70.

    Article  PubMed  Google Scholar 

  79. Corti R. Noninvasive imaging of atherosclerotic vessels by MRI for clinical assessment of the effectiveness of therapy. Pharmacol Ther. 2006;110:57–70.

    Article  PubMed  CAS  Google Scholar 

  80. Tang TY, Howarth SP, Miller SR, Graves MJ, Patterson AJ, U-King-Im JM, et al. The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study. Evaluation using ultra small super-paramagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol. 2009;53:2039–50. This article demonstrated that aggressive lipid-lowering therapy with atorvastatin over a 3-month period is associated with significant reduction in carotid plaque inflammation evaluated with ultrasmall superparamagnetic iron oxide enhanced magnetic resonance imaging.

    Article  PubMed  CAS  Google Scholar 

  81. Underhill HR, Yuan C, Zhao XQ, Kraiss LW, Parker DL, Saam T, et al. Effect of rosuvastatin therapy on carotid plaque morphology and composition in moderately hypercholesterolemic patients: a high-resolution magnetic resonance imaging trial. Am Heart J. 2008;155:584.e1–8.

    Article  PubMed  Google Scholar 

  82. Crisby M, Nordin-Fredriksson G, Shah PK, Yano J, Zhu J, Nilsson J. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation. 2001;103:926–33.

    Article  PubMed  CAS  Google Scholar 

  83. Corti R, Fuster V, Fayad ZA, Worthley SG, Helft G, Smith D, et al. Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: two years’ follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation. 2002;106:2884–7.

    Article  PubMed  CAS  Google Scholar 

  84. Yonemura A, Momiyama Y, Fayad ZA, Ayaori M, Ohmori R, Higashi K, et al. Effect of lipid-lowering therapy with atorvastatin on atherosclerotic aortic plaques detected by noninvasive magnetic resonance imaging. J Am Coll Cardiol. 2005;45:733–42.

    Article  PubMed  CAS  Google Scholar 

  85. Lima JA, Desai MY, Steen H, Warren WP, Gautam S, Lai S. Statin-induced cholesterol lowering and plaque regression after 6 months of magnetic resonance imaging-monitored therapy. Circulation. 2004;110:2336–41.

    Article  PubMed  CAS  Google Scholar 

  86. Kawasaki M, Sano K, Okubo M, et al. Volumetric quantitative analysis of tissue characteristics of coronary plaques after statin therapy using three-dimensional integrated backscatter intravascular ultrasound. J Am Coll Cardiol. 2005;45:1946–53.

    Article  PubMed  CAS  Google Scholar 

  87. Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350:1495–504.

    Article  PubMed  CAS  Google Scholar 

  88. Eisen HJ, Tuzcu EM, Dorent R, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med. 2003;349:847–58.

    Article  PubMed  CAS  Google Scholar 

  89. Berry C, L’Allier PL, Grégoire J, Lespérance J, Levesque S, Ibrahim R, et al. Comparison of intravascular ultrasound and quantitative coronary angiography for the assessment of coronary artery disease progression. Circulation. 2007;115:1851–7.

    Article  PubMed  Google Scholar 

  90. Brown BG. A direct comparison of intravascular ultrasound and quantitative coronary arteriography: implications for measures of atherosclerosis as clinical surrogates. Circulation. 2007;115:1824–6.

    Article  PubMed  Google Scholar 

  91. Schoenhagen P, Tuzcu EM, Apperson-Hansen C, Wang C, Wolski K, Lin S, et al. Determinants of arterial wall remodeling during lipid-lowering therapy: serial intravascular ultrasound observations from the Reversal of Atherosclerosis with Aggressive Lipid Lowering Therapy (REVERSAL) trial. Circulation. 2006;113:2826–34.

    Article  PubMed  CAS  Google Scholar 

  92. Ballantyne CM, Raichlen JS, Nicholls SJ, Erbel R, Tardif JC, Brener SJ, et al. The ASTEROID Investigators. Effect of rosuvastatin therapy on coronary artery stenoses assessed by quantitative coronary angiography. a study to evaluate the effect of rosuvastatin on intravascular ultrasound-derived coronary atheroma burden. Circulation. 2008;117:2458–66.

    Article  PubMed  CAS  Google Scholar 

  93. Brener SJ, Ivanc TB, Poliszczuk R, Chen M, Tuzcu EM, Hu T, et al. Antihypertensive therapy and regression of coronary artery disease: insights from the Comparison of Amlodipine Versus Enalapril to Limit Occurrences of Thrombosis (CAMELOT) and Norvasc for Regression of Manifest Atherosclerotic Lesions by Intravascular Sonographic Evaluation (NORMALISE) trials. Am Heart J. 2006;152:1059–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Sources of Funding

There were no external funding sources for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Updesh Singh Bedi.

Additional information

This article is part of the Topical Collection on Statin Drugs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, M., Bedi, U.S. Is Atherosclerosis Regression a Realistic Goal of Statin Therapy and What Does That Mean?. Curr Atheroscler Rep 15, 294 (2013). https://doi.org/10.1007/s11883-012-0294-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-012-0294-4

Keywords

Navigation