Skip to main content
Log in

Assessment of Titanium Aluminide Alloys for High-Temperature Nuclear Structural Applications

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Titanium aluminide (TiAl) alloys exhibit high specific strength, low density, good oxidation, corrosion, and creep resistance at elevated temperatures, making them good candidate materials for aerospace and automotive applications. TiAl alloys also show excellent radiation resistance and low neutron activation, and they can be developed to have various microstructures, allowing different combinations of properties for various extreme environments. Hence, TiAl alloys may be used in advanced nuclear systems as high-temperature structural materials. Moreover, TiAl alloys are good materials to be used for fundamental studies on microstructural effects on irradiation behavior of advanced nuclear structural materials. This article reviews the microstructure, creep, radiation, and oxidation properties of TiAl alloys in comparison with other nuclear structural materials to assess the potential of TiAl alloys as candidate structural materials for future nuclear applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Appel, U. Brossmana, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, J. Mullauer, M. Oehring, and J.D.H. Paul, Adv. Eng. Mater. 2, 699 (2000).

    Article  Google Scholar 

  2. F.H. Froes, C. Suryanarayana, and D. Eliezer, J. Mater. Sci. 27, 5113 (1992).

    Article  Google Scholar 

  3. D. Chandley, Metall. Sci. Technol. 18, 8 (2000).

    Google Scholar 

  4. K. Ameyama, O. Okada, K. Hirai, and N. Nakabo, Mater. Trans. JIM 36, 269 (1995).

    Google Scholar 

  5. http://www.nasa.gov/centers/glenn/news/AF/2008/July08_GEnx.html. Accessed 21 August 2012.

  6. A. Hishinuma, K. Fukai, T. Sawai, and K. Nakata, Intermetallics 4, 179 (1996).

    Article  Google Scholar 

  7. W. Hoffelner, J. Mater. Sci. 45, 2247 (2010).

    Article  Google Scholar 

  8. A. Hishinuma, M. Tabuchi, T. Sawai, and K. Nakata, Phys. Stat. Sol. A 167, 521 (1998).

    Article  Google Scholar 

  9. P. Magnusson, J.C. Chen, and W. Hoffelner, Metall. Mater. Trans. A 40, 2837 (2009).

    Article  Google Scholar 

  10. S. Amazaki, H. Miura, H. Koike, Y. Seki, T. Kunugi, S. Nishio, I. Aoki, and A. Shimizu, Fusion Eng. Des. 25, 227 (1994).

    Article  Google Scholar 

  11. S.J. Zinkle and T. Busby, Mater. Today 12, 12 (2009).

    Article  Google Scholar 

  12. R.W. Grimes, R.J.M. Konings, and L. Edwards, Nat. Mater. 7, 683 (2008).

    Article  Google Scholar 

  13. I. Charit and K.L. Murty, JOM 62 (9), 67 (2010).

    Article  Google Scholar 

  14. T. Allen, J. Busby, M. Meyer, and D. Petti, Mater. Today 13, 14 (2010).

    Article  Google Scholar 

  15. S. Baindur, Bull. Can. Nucl. Soc. 29, 32 (2008).

    Google Scholar 

  16. R.V. Ramanujan, Int. Mater. Rev. 45, 217 (2000).

    Article  Google Scholar 

  17. H. Zhu, D.Y. Seo, and K. Maruyama, JOM 62 (1), 64 (2010).

    Article  Google Scholar 

  18. D.R. Johnson, Y. Masuda, T. Yamanaka, H. Inui, and M. Yamaguchi, Metall. Mater. Trans. A 31, 2463 (2000).

    Article  Google Scholar 

  19. J. Beddoes, W. Wallace, and L. Zhao, Int. Mater. Rev. 40, 197 (1995).

    Article  Google Scholar 

  20. H. Zhu, D.Y. Seo, K. Maruyama, and P. Au, Metall. Mater. Trans. A 37, 3149 (2006).

    Article  Google Scholar 

  21. K. Maruyama, M. Yamaguchi, G. Suzuki, H. Zhu, H.Y. Kim, and M.H. Yoo, Acta Mater. 54, 5185 (2004).

    Article  Google Scholar 

  22. H. Zhu, D.Y. Seo, K. Maruyama, and P. Au, Metall. Mater. Trans. A 36, 1339 (2005).

    Article  Google Scholar 

  23. M.E. Kassner and M.T. Perez-Prado, Fundamentals of Creep in Metals and Alloys (Oxford, UK: Elsevier Ltd., 2004), pp. 175–188.

    Google Scholar 

  24. A.S. Argon, Physical Metallurgy, ed. R.W. Cahn and P. Haasen (Amsterdam, The Netherlands: Elsevier Science B.V., 1996), p. 1877.

    Chapter  Google Scholar 

  25. G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin, Germany: Springer, 2007), pp. 711–758.

    Google Scholar 

  26. S.J. Zinkle and N.M. Ghoniem, Fusion Eng. Des. 51–52, 55 (2000).

    Article  Google Scholar 

  27. H. Zhu, D.Y. Seo, K. Maruyama, and P. Au, Mater. Sci. Eng. A 483–484, 517 (2008).

    Google Scholar 

  28. H. Zhu, D.Y. Seo, and K. Maruyama, Scripta Mater. 54, 1979 (2006).

    Article  Google Scholar 

  29. F. Appel and R. Wagner, Mater. Sci. Eng. R 22, 187 (1998).

    Article  Google Scholar 

  30. K. Maruyama, R. Yamamoto, H. Nakakuki, and N. Fujitsuna, Mater. Sci. Eng. A 239–240, 419 (1997).

    Google Scholar 

  31. H.Y. Kim, G. Wegmana, and K. Maruyama, Mater. Sci. Eng. A 329–331, 795 (2002).

    Google Scholar 

  32. T. Hayashi, P.M. Sarosi, J.H. Schneibel, and M.J. Mills, Acta Mater. 56, 1407 (2008).

    Article  Google Scholar 

  33. M.S. Ei-Genk and J.M. Tournier, J. Nucl. Mater. 340, 93 (2005).

    Article  Google Scholar 

  34. M. Song, K. Mitsuishi, M. Takeguchi, K. Furuya, T. Tanabe, and T. Noda, J. Nucl. Mater. 307–311, 971 (2002).

    Article  Google Scholar 

  35. G. Yu, N. Nita, and N. Baluc, Fusion Eng. Des. 75–79, 1037 (2005).

    Article  Google Scholar 

  36. H. Zhu, D.Y. Seo, K. Maruyama, and P. Au, Appl. Phys. Lett. 90, 171925 (2007).

    Article  Google Scholar 

  37. H. Zhu, D.Y. Seo, K. Maruyama, and P. Au, Scripta Mater. 52, 45 (2005).

    Article  Google Scholar 

  38. J. Beddoes, D.Y. Seo, and H. Saari, Scripta Mater. 52, 745 (2005).

    Article  Google Scholar 

  39. M.A. Pouchon, J.C. Chen, and W. Hoffelner, Nucl. Instrum. Methods Phys. Res. B 267, 1500 (2009).

    Article  Google Scholar 

  40. A. Hishinuma, K. Nakata, K. Fukai, K. Ameyama, and M. Tokizane, J. Nucl. Mater. 199, 167 (1993).

    Article  Google Scholar 

  41. Y. Shirai and M. Yamaguchi, Mater. Sci. Eng. A 152, 173 (1992).

    Article  Google Scholar 

  42. Y. Shirai, H. Kohda, T. Murakami, M. Yamaguchi, and H. Kodaka, Intermetallics 4, 139 (1996).

    Article  Google Scholar 

  43. R. Wurschum, K. Badura-Gergen, E.A. Kummerle, C. Grupp, and H.E. Schaefer, Phys. Rev. B 54, 849 (1996).

    Article  Google Scholar 

  44. M. Song, K. Furuya, T. Tanabe, and T. Noda, J. Nucl. Mater. 271–272, 200 (1999).

    Article  Google Scholar 

  45. M. Song, K. Mitsuishi, M. Takeguchi, K. Furuya, T. Tanabe, and T. Noda, Philos. Mag. Lett. 80, 661 (2000).

    Article  Google Scholar 

  46. Y. Miwa, T. Sawai, K. Fukai, D.T. Hoelzer, and A. Hishinuma, J. Nucl. Mater. 283–287, 273 (2000).

    Article  Google Scholar 

  47. J. Chen, P. Jung, M. Nazmy, and W. Hoffelner, J. Nucl. Mater. 352, 36 (2006).

    Article  Google Scholar 

  48. K. Nakata, K. Fukai, A. Hishinuma, and K. Ameyama, J. Nucl. Mater. 240, 221 (1997).

    Article  Google Scholar 

  49. K. Nakata, K. Fukai, A. Hishinuma, and K. Ameyama, J. Nucl. Mater. 283–287, 278 (2000).

    Article  Google Scholar 

  50. A. Hishinuma, J. Nucl. Mater. 239, 267 (1996).

    Article  Google Scholar 

  51. K. Nakata, K. Fukai, A. Hishinuma, K. Ameyama, and M. Tokizane, J. Nucl. Mater. 202, 39 (1993).

    Article  Google Scholar 

  52. D.A. McClintock, M.A. Sokolov, D.T. Hoelzer, and R.K. Nanstad, J. Nucl. Mater. 392, 353 (2009).

    Article  Google Scholar 

  53. M.H. Yoo and A. Hishinuma, Paper presented at the Proc. of TMS Symposium on Advances in Twinning, 1999, pp. 1–14.

  54. F. Appel, J.D.H. Paul, and M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co., kGaA, 2011), p. 433.

    Book  Google Scholar 

  55. Y.G. Zhang, Y.F. Han, G.L. Chen, J.T. Guo, X.J. Wan, and D. Feng, Structural Intermetallics (Beijing, Germany: Defence Industry Publish, 2001), p. 446.

    Google Scholar 

  56. A. Gil, H. Hoven, E. Wallura, and W.J. Quadakkers, Corros. Sci. 34, 615 (1993).

    Article  Google Scholar 

  57. P. Perez, J.A. Jimenez, G. Frommeyer, and P. Adeva, Oxid. Met. 53, 99 (2000).

    Article  Google Scholar 

  58. Y. Chen, K. Sridharan, S. Ukai, and T.R. Allen, J. Nucl. Mater. 371, 118 (2007).

    Article  Google Scholar 

  59. T. Kondo, Y. Watanabe, Y.S. Yi, and A. Hishinuma, J. Nucl. Mater. 258–263, 2083 (1998).

    Article  Google Scholar 

  60. A. Zeller, F. Dettenwanger, and M. Schutze, Intermetallics 10, 59 (2002).

    Article  Google Scholar 

  61. R. Kremer and W. Auer, Mater. Corros. 48, 35 (1997).

    Article  Google Scholar 

  62. Z. Liu and T. Narita, Intermetallics 12, 459 (2004).

    Article  Google Scholar 

  63. H. Zhu, B. Zhao, Z. Li, and K. Maruyama, Mater. Trans. 46, 2150 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanliang Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H., Wei, T., Carr, D. et al. Assessment of Titanium Aluminide Alloys for High-Temperature Nuclear Structural Applications. JOM 64, 1418–1424 (2012). https://doi.org/10.1007/s11837-012-0471-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0471-5

Keywords

Navigation