Skip to main content

Advertisement

Log in

The Role of Impact Energy in Failure of Explosive Cladding of Inconel 625 and Steel

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Though explosive cladding is a viable potential solid state method for cladding different materials together, complicated behavior of materials under ballistic impacts raises the probability of interfacial shear failure. This study aims to relate the failure of explosive cladding of Inconel 625 and plain carbon steel to utilized impact energy, and consequently finding appropriate cladding parameters to prevent interfacial shear failure. The shear strength representing the adhesion strength is used as a failure criterion. According to the obtained results, by increasing the impact energy to an optimum value, the adhesion strength starts to increase. However, after an optimum value, any further increment of impact energy drops the shear strength significantly, which makes the cladding process fail. The outcomes reveal the decisive role of plastic strain localization caused by high impact energies in this failure, where local development of microcracks through adiabatic shear bands in the steel raises the chance of failure. Consequently, an attempt is made to find the optimum cladding parameters to prevent strain localization and failure of cladding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kohl, H.K., Peng, K.: Thermal stability of the superalloys Inconel 625 and Nimonic 86. J. Nucl. Mater. 101, 243–250 (1981)

    Article  CAS  Google Scholar 

  2. Sexton, L., Lavin, S., Byrne, G., Kennedy, A.: Laser cladding of aerospace materials. J. Mater. Process. 122, 63–68 (2002)

    Article  Google Scholar 

  3. Dinda, G.P., Dasgupta, A.K., Mazumder, J.: Laser aided direct deposition of Inconel 625 superalloy: microstructural evolution and thermal stability. Mater. Sci. Eng. A 509, 98–104 (2009)

    Article  Google Scholar 

  4. Ramirez, A.J., Lippold, J.C.: High temperature behavior of Ni-base weld metal Part II—insight into the mechanism for ductility dip cracking. Mater. Sci. Eng. A 380, 245–258 (2004)

    Article  Google Scholar 

  5. Zhang, D., Harris, S.J., McCartney, D.G.: Microstructure formation and corrosion behaviour in HVOF-sprayed Inconel 625 coatings. Mater. Sci. Eng. A 344, 45–56 (2003)

    Article  Google Scholar 

  6. Panl, C.P., Ganesh, P., Mishra, S.K., Bhargava, P., Negi, J., Nath, A.K.: Investigating laser rapid manufacturing for inconel-625 components. Opt. Laser 39, 800–805 (2007)

    Article  Google Scholar 

  7. Ogborn, J.S., Olson, D.L., Cieslak, M.J.: Influence of solidification on the microstructural evolution of nickel base weld metal. Mater. Sci. Eng. 203, 134–139 (1995)

    Article  Google Scholar 

  8. Blazynski, T.Z.: Explosive welding, forming and compaction. Applied Science Publishers, London (1985)

    Google Scholar 

  9. Vaidyanthan, P.V., Rathinasabapathi, M., Ramanathan, A.R.: A note on the estimation of flyer plate velocity in explosive cladding. J. Mech. Work. Technol. 18, 343–350 (1998)

    Article  Google Scholar 

  10. DIN 50162 Standard, DIN Handbook, 1998

  11. Crossland, B.: Explosive welding of metals and its application. Clarendon Press, Oxford (1982)

    Google Scholar 

  12. Xue-Bin, W.: Effect of constitutive parameters on adiabatic shear localization for ductile metal based on JOHNSON–COOK and gradient plasticity models. Trans. Nonferrous Metal. Soc. 16, 1362–1369 (2006)

    Article  Google Scholar 

  13. Gong, X., Fan, J.L., Huang, B.Y., Tian, J.M.: Microstructure characteristics and a deformation mechanism of fine grained tungsten heavy alloy under high strain rate compression. Mater. Sci. Eng. A 527, 7565–7570 (2010)

    Article  Google Scholar 

  14. Backman, M.E., Finnegan, S.A.: In metallurgical effects at high strain rate. Plenum Press, New York (1973)

    Google Scholar 

  15. Walley, S.M.: Shear localization: a historical overview. Metall. Mater. Trans. A 38, 2629–2654 (2007)

    Article  Google Scholar 

  16. Molinari, A., Clifton, R.J.: Analytical characterization of shear localization in thermoviscoplastic materials. J. Appl. Mech. T ASME 54, 806–812 (1987)

    Article  Google Scholar 

  17. Duffy, J., Chi, Y.C.: On the measurement of local strain and temperature during the formation of adiabatic shear bands. Mater. Sci. Eng. A 157, 195–210 (1992)

    Article  Google Scholar 

  18. Coleman, B.D., Hodgdon, M.L.: On localization of strain shearing motions of ductile materials. Res. Mech. 23, 223–238 (1988)

    Google Scholar 

  19. Xu, Y.B., Zhong, W.L., Chen, Y.J., Shen, L.T., Liu, Q., Bai, Y.L., Meyers, M.A.: Microstructure and properties of magnesium–aluminum explosively welded composite plate. Mater. Sci. Eng. A 299, 287–295 (2001)

    Article  Google Scholar 

  20. Coleman, B.D., Hodgdon, M.L.: On shear bands in ductile materials. Arch. Ration. Mech. Anal. 90, 219–247 (1985)

    Article  Google Scholar 

  21. Dieter, G.E.: Mechanical Metallurgy, 3rd edn, pp. 241–272. Mc Graw Hill, Boston (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Zareie Rajani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zareie Rajani, H.R., Akbari Mousavi, S.A.A. The Role of Impact Energy in Failure of Explosive Cladding of Inconel 625 and Steel. J Fail. Anal. and Preven. 12, 646–653 (2012). https://doi.org/10.1007/s11668-012-9601-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-012-9601-1

Keywords

Navigation