Skip to main content
Log in

Analysis of Formation and Interfacial WC Dissolution Behavior of WC-Co/Invar Laser-TIG Welded Joints

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

During the valve fabrication, hard metal is welded to stainless steel or invar alloy for sealing purposes because of its good heat resistance operating at 500 °C. However, WC (tungsten carbide) dissolution in weld pool softens the hard metal and decreases mechanical properties near the hard metal/weld interface. In order to analyze the WC dissolution in welded joint, joining of hard metal and invar alloy was carried out using laser-tungsten inert gas hybrid welding method. Microstructures of the weld region, chemical composition were investigated using optical microscope, scanning electron microscopy, and EDAX, respectively. Mechanical properties such as microhardness and four-point bend strength test were performed. Larger and smaller WC dissolution and WC dissolution through transition layer based on thermo-dynamics were discussed. The results thus indicate that WC dissolution led to cellular microstructure, columnar crystal, and transition layer under the effect of laser beam and tungsten arc. WC dissolution was affected by metal ions Fe+, Ni+, Co+ exchange in W-M-C system, and WC grain growth was driven by forces caused by laser beam and tungsten arc in larger WC, smaller WC, and liquid Fe, Ni systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.M. Kadzioka, W. Zarek, E. Talik, and E. Popiel, Mössbauer Investigations and Photoemission Studies of the Fe 3s Spin Splitting in Some Fe-Ni Alloys, Acta Phys. Pol., A, 2008, 114, p 1493–1500

    Google Scholar 

  2. V.M. Nadutov, S.G. Kosintsev, O. Svystunov, V.M. Garamus, R. Willumeit, H. Eckerlebe, T. Ericsson, and H. Annersten, Anti-Invar Properties and Magnetic Order in fcc Fe–Ni–C Alloy, J. Magn. Magn. Mater., 2011, 323, p 2786–2791

    Article  CAS  Google Scholar 

  3. R.R. Mulyukov, K.Y. Mulyukov, and I.M. Safarov, Effect of Severe Plastic Deformation on the Properties of the Fe-36% Ni Invar Alloy, Phys. Met. Metallogr., 2006, 102, p 91–96

    Article  Google Scholar 

  4. Z.W. Yang, L.X. Zhang, Q. Xue, P. He, and J.C. Feng, Interfacial Microstructure and Mechanical Property of SiO2-BN Ceramics and Invar Joint Brazed with Ag-Cu-Ti Active Filler Metal, Mater. Sci. Eng. A, 2012, 534, p 309–313

    Article  CAS  Google Scholar 

  5. V.A. Shabashov, A.V. Litvinov, N.V. Kataeva, K.A. Lyashkov, S.I. Novikov, and S.G. Titov, Formation of Boron Solid Solution in Fe-Ni Invar Upon Severe Plastic Deformation, Phys. Met. Metallogr., 2011, 112, p 245–255

    Article  Google Scholar 

  6. P.Q. Xu, X.J. Zhao, G.X. Xu, L.N. Li, and Z.S. Yu, Microstructure Characterisation and CTE Study of Fe-42Ni-Nb Invar Alloys, Mater. Sci. Tech Lond, 2011, 27, p 655–660

    Article  CAS  Google Scholar 

  7. T.K. Ha, K.D. Lee, J.H. Song, and H.T. Jeong, Effect of Aging Treatment Conditions on the Microstructure and Strength of Fe-36Ni Based Invar Alloy, Key Engineering Materials, The Mechanical Behavior of Materials X Part 1: 10th International Conference on the Mechanical Behaviour of Materials, Vol. 345–346, 2007, p 109–112

  8. O.A. Khomenko, Origin and Specific Features of Invar Anomalies of Physical Properties: Fe-Ni Alloys with an FCC Lattice, Phys. Met. Metallogr., 2007, 104, p 146–156

    Article  Google Scholar 

  9. M.K. Kim, J. Namkung, and Y.S. Ahn, The Effect of Si and Microstructure Evolution on the Thermal Expansion Properties of Fe-42Ni-Si Alloy Strips, J. Mater. Sci., 2008, 43, p 3112–3117

    Article  CAS  Google Scholar 

  10. A.I. Uvarov, V.A. Sandovskii, V.A. Kazantsev, E.I. Anufrieva, N.F. Vil’Danova, and Y.I. Filippov, Effect of Heat and Thermomechanical Treatments on the Structure and Physical and Mechanical Properties of the N30K10T3 Invar, Phys. Met. Metallogr., 2008, 105, p 45–55

    Google Scholar 

  11. V.M. Nadutov, Y.O. Svystunov, S.G. Kosintsev, and V.A. Tatarenko, Mössbauer Analysis and Magnetic Properties of Invar Fe-Ni-C and Fe-Ni-Mn-C Alloys, Hyperfine Interact., 2006, 168, p 929–935

    Article  CAS  Google Scholar 

  12. W. Lee, B. Kwon, and S. Jung, Effect of Cr3C2 on the Microstructure and Mechanical Properties of the Brazed Joints WC-Co and Carbon Steel, Int. J. Refract. Met. H, 2006, 24, p 215–221

    Article  CAS  Google Scholar 

  13. O. Kenichi and K. Mitsuhiko, Elasto-Plastic-Creep Characteristics of BAg8 Brazing Filler Metal Estimated by Tension-Strain Maintenance Test, Q. J. Jpn. Weld. Soc., 2009, 27, p 96–103

    Article  Google Scholar 

  14. M.I. Barrena, J.M. Salazar, and L. Matesanz, Interfacial Microstructure and Mechanical Strength of WC-Co/90MnCrV8 Cold Work Tool Steel Diffusion Bonded Joint with Cu/Ni Electroplated Interlayer, Mater. Des., 2010, 31, p 3389–3394

    Article  CAS  Google Scholar 

  15. L. Zhu, L.M. Luo, J. Luo, J. Li, and Y.C. Wu, Effect of Electroless Plating Ni-Cu-P Layer on the Wettability Between Cemented Carbides and Soldering Tins, Int. J. Refract. Met. H, 2012, 31, p 192–195

    Article  CAS  Google Scholar 

  16. F. Andreatta, L. Matesanz, A.H. Akita, L. Paussa, L. Fedrizzi, C.S. Fugivara, J.M. Salazarb, and A.V. Benedettic, SAE 1045 steel/WC-Co/Ni-Cu-Ni/SAE 1045 Steel Joints Prepared by Dynamic Diffusion Bonding: Microelectrochemical Studies in 0.6 M NaCl solution, Electrochim. Acta, 2009, 55, p 551–559

    Article  CAS  Google Scholar 

  17. J. Rodelas, G. Hilmas, and R.S. Mishra, Sinterbonding Cobalt-Cemented Tungsten Carbide to Tungsten Heavy Alloys, Int. J. Refract. Met. H, 2009, 27, p 835–841

    Article  CAS  Google Scholar 

  18. N.L. Tian and Y.Q. Yang, Study of Laser Molten Welding of Cemented Carbides and Steel, Proc. SPIE, 1996, 2888, p 185–193

    Article  CAS  Google Scholar 

  19. A. Costa, R.M. Miranda, and L. Quintino, Materials Behavior in Laser Welding of Hardmetals to Steel, Mater. Manuf. Process., 2006, 21, p 459–465

    Article  Google Scholar 

  20. C. Barbatti, J. Garcia, and G. Liedl, Joining of Cemented Carbides to Steel by Laser Beam Welding, Materialwiss. Werkstofftech., 2007, 38, p 907–914

    Article  CAS  Google Scholar 

  21. P.Q. Xu and X.J. Zhao, Analysis of Microstructure and Properties of Cemented Carbide and Invar Alloy Weldment, J. Mater. Eng. Perform., 2010, 19, p 294–300

    Article  CAS  Google Scholar 

  22. P.Q. Xu, X.J. Zhao, D.X. Yang, and S. Yao, Study on Filler Metal (Ni-Fe-C) During GTAW of WC-30Co to 45 Carbon Steel, J. Mater. Sci., 2005, 40, p 6559–6564

    Article  CAS  Google Scholar 

  23. P.Q. Xu, Dissimilar Welding of WC-Co Cemented Carbide to Ni42Fe50.9C0.6 Mn3.5Nb3 Invar Alloy by Laser-Tungsten Inert Gas Hybrid Welding, Mater. Des., 2011, 32, p 229–237

    Article  Google Scholar 

  24. P.Q. Xu, D. Ma, and C.W. Ma. Analysis of WC Dissolution Phenomenon Happened in TIG Welded Joint of Cemented Carbide and Invar alloy. 2012 Int. Conf. Front. Mech. Eng. Mater. Eng., MEME2012, Hong Kong, July 27–29, 2012

  25. G.S. Upadhyaya, Cemented Tungsten Carbides: Production, Properties, and Testing, Noyes Publications, Park Ridge, NJ, 1998

    Google Scholar 

  26. O. Eso, Z.G.Z. Fang, and A. Griffo, Kinetics of Cobalt Gradient Formation During the Liquid Phase Sintering of Functionally Graded WC-Co, Int. J. Refract. Met. H, 2007, 25, p 286–292

    Article  CAS  Google Scholar 

  27. V.K. Sarin, Morphology of Eta Phase in Cemented WC-Co Alloys, Proc. 5th Int. Powder. Metall. Conf., Chicago, IL, 1976

  28. Z.Y. Xu, Thermal Dynamics of Materials, Higher Education Press, Beijing, 2009, p 121–126

    Google Scholar 

  29. K. Mannesson, J. Jeppsson, A. Borgenstam, and J. Ågren, Carbide Grain Growth in Cemented Carbides, Acta Mater., 2011, 59, p 1912–1923

    Article  CAS  Google Scholar 

  30. J. Weidow, S. Johansson, H.O. Andrén, and G. Wahnström, Transition Metal Solubilities in WC in Cemented Carbide Materials, J. Am. Ceram. Soc., 2011, 94, p 605–610

    Article  CAS  Google Scholar 

  31. J.D. Harrison and C. Wagner, The Attack of Solid Alloys by Liquid Metals and Salt Melts, Acta Metall., 1959, 7, p 722–735

    Article  CAS  Google Scholar 

  32. R.B. Adams and J.A. Pask, Fundamentals of Glass-to-Metal Bonding: VII, Wettability of Iron by Molten Sodium Silicate Containing Iron Oxide, J. Am. Ceram. Soc., 1961, 44, p 430–433

    Article  CAS  Google Scholar 

  33. L.G. Hagan and S.F. Ravitz, Fundamentals of Glass-to-Metal Bonding: VI, Reaction Between Metallic Iron and Molten Sodium Disilicate, J. Am. Ceram. Soc., 1961, 44, p 428–429

    Article  CAS  Google Scholar 

  34. R.M. Walser and R.W. Bene, First Phase Nucleation in Silicon-Transition-Metal Planar Interfaces, Appl. Phys. Lett., 1976, 28, p 624–625

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants Number: 51105240). PQX thanks the Foundation support from Shanghai Municipal Education Commission and Dr. L. J. Li from Utah State University for the Visiting Research Fellowship Award, which gives him more research time and opportunities. And many thanks will be given to Dr. Bishal Silwal in Utah State University for his help during paper revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Q. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, P.Q., Ren, J.W., Zhang, P.L. et al. Analysis of Formation and Interfacial WC Dissolution Behavior of WC-Co/Invar Laser-TIG Welded Joints. J. of Materi Eng and Perform 22, 613–623 (2013). https://doi.org/10.1007/s11665-012-0279-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0279-z

Keywords

Navigation