Skip to main content
Log in

Microstructure and Mechanical Performance of Friction Stir Spot-Welded Aluminum-5754 Sheets

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Friction stir spot welding (FSSW) is a recent trend of joining light-weight sheet metals while fabricating automotive and aerospace body components. For the successful application of this solid-state welding process, it is imperative to have a thorough understanding of the weld microstructure, mechanical performance, and failure mechanism. In the present study, FSSW of aluminum-5754 sheet metal was tried using tools with circular and tapered pin considering different tool rotational speeds, plunge depths, and dwell times. The effects of tool design and process parameters on temperature distribution near the sheet-tool interface, weld microstructure, weld strength, and failure modes were studied. It was found that the peak temperature was higher while welding with a tool having circular pin compared to tapered pin, leading to a bigger dynamic recrystallized stir zone (SZ) with a hook tip bending towards the upper sheet and away from the keyhole. Hence, higher lap shear separation load was observed in the welds made from circular pin compared to those made from tapered pin. Due to influence of size and hardness of SZ on crack propagation, three different failure modes of weld nugget were observed through optical cross-sectional micrograph and SEM fractographs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. R.W. Messler, Jr., Overview of Welding Processes. ASM Handbook 2010 V6A-article 1C

  2. R.W. Messler, Jr., The Basic Metallurgy of Welding, Brazing and Soldering, Joining of Materials and Structures: From Pragmatic Process to Enabling Technology, Butterworth-Heinemann Ltd, Oxford, 2004, p 447–500

    Google Scholar 

  3. P. Praveen and P.K.D.V. Yarlagadda, Meeting Challenges in Welding of Aluminum Alloys Through Pulse Gas Metal Arc Welding, J. Mater. Process. Technol., 2005, 164–165, p 1106–1112

    Article  Google Scholar 

  4. T.A. Barnes and I.R. Pashby, Joining Techniques for Aluminium Spaceframes Used in Automobiles: Part I—Solid and Liquid Phase Welding, J Mater Proces Technol, 2000, 99(1–3), p 62–71

    Article  Google Scholar 

  5. L. Han, M. Thornton, D. Boomer, and M. Shergold, Effect of Aluminium Sheet Surface Conditions on Feasibility and Quality of Resistance Spot Welding, J. Mater. Process. Technol., 2010, 210(8), p 1076–1082

    Article  CAS  Google Scholar 

  6. S.W. Kallee, Friction Stir Welding at TWI. The Welding Institute (TWI) [updated 2009 April 14; cited 2006 Sept 09]. http://www.twi.co.uk/content/fswintro.html. Retrieved April 04, 2009

  7. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes, Friction-Stir Butt Welding, GB Patent 9125978.8, Int patent PCT/GB92/02203 (1991)

  8. M. Merzoug, M. Mazari, L. Berrahal, and A. Imad, Parametric Studies of the Process of Friction Spot Stir Welding of Aluminium 6060-T5 Alloys, Mater. Des., 2010, 31(6), p 3023–3028

    Article  CAS  Google Scholar 

  9. Z. Zhang, X. Yang, J. Zhang, G. Zhou, X. Xu, and R. Zou, Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Spot Welded 5052 Aluminum Alloy, Mater. Des., 2011, 32(8–9), p 4461–4470

    Article  CAS  Google Scholar 

  10. Q. Yang, S. Mironov, Y.S. Sato, and K. Okamoto, Material Flow During Friction Stir Spot Welding, Mater. Sci. Eng., A, 2010, 527(16–17), p 4389–4398

    Google Scholar 

  11. R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties, Prog. Mater. Sci., 2008, 53(6), p 980–1023

    Article  CAS  Google Scholar 

  12. G. Buffa, L. Fratini, and M. Piacentini, On the Influence of Tool Path in Friction Stir Spot Welding of Aluminum Alloys, J. Mater. Process. Technol., 2008, 208(1–3), p 309–317

    Article  CAS  Google Scholar 

  13. W. Yuan, R.S. Mishra, S. Webb, Y.L. Chen, B. Carlson, D.R. Herling, and G.J. Grant, Effect of Tool Design and Process Parameters on Properties of Al Alloy 6016 Friction Stir Spot Welds, J. Mater. Process. Technol., 2011, 211(6), p 972–977

    Article  CAS  Google Scholar 

  14. H. Badarinarayan, Y. Shi, X. Li, and K. Okamoto, Effect of Tool Geometry on Hook Formation and Static Strength of Friction Stir Spot Welded Aluminum 5754-O Sheets, Int. J. Mach. Tools Manuf, 2009, 49(11), p 814–823

    Article  Google Scholar 

  15. H. Badarinarayan, Q. Yang, and S. Zhu, Effect of Tool Geometry on Static Strength of Friction Stir Spot-Welded Aluminum Alloy, Int. J. Mach. Tools Manuf, 2009, 49(2), p 142–148

    Article  Google Scholar 

  16. Y. Tozaki, Y. Uematsu, and K. Tokaji, Effect of Tool Geometry on Microstructure and Static Strength in Friction Stir Spot Welded Aluminium Alloys, Int. J. Mach. Tools Manuf, 2007, 47(15), p 2230–2236

    Article  Google Scholar 

  17. H.S. Shin and Y.C. Jung, Characteristics of Friction Stir Spot Welding of Zr-Based Bulk Metallic Glass Sheets, J. Alloys Compd., 2010, 504((S1)), p S279–S282

    Article  Google Scholar 

  18. D.H. Choi, C.Y. Lee, B.W. Ahn, J.H. Choi, Y.M. Yeon, K. Song, H.S. Park, Y.J. Kim, C.D. Yoo, and S.B. Jung, Frictional Wear Evaluation of WC-Co Alloy Tool in Friction Stir Spot Welding of Low Carbon Steel Plates, Int. J. Refract. Met. Hard Mater., 2009, 27(8–9), p 931–936

    Article  CAS  Google Scholar 

  19. P.H.F. Oliveira, S.T. Amancio-Filho, J.F. dos Santos, and E. Hage, Jr., Preliminary Study on the Feasibility of Friction Spot Welding in PMMA, Mater. Lett., 2010, 64(19), p 2098–2101

    Article  CAS  Google Scholar 

  20. Y. Hovanski, M.L. Santella, and G.J. Grant, Friction Stir Spot Welding of Hot-Stamped Boron Steel, Scripta Mater., 2007, 57(9), p 873–876

    Article  CAS  Google Scholar 

  21. D.H. Choi, B.W. Ahn, C.Y. Lee, Y.M. Yeon, K. Song, and S.B. Jung, Formation of Intermetallic Compounds in Al and Mg Alloy Interface During Friction Stir Spot Welding, Intermetallics, 2011, 19(2), p 125–130

    Article  CAS  Google Scholar 

  22. Y. Uematsu, K. Tokaji, Y. Tozaki, and Y. Nakashimac, Fatigue Behaviour of Dissimilar Friction Stir Spot Weld Between A6061 and SPCC Welded by a Scrolled Groove Shoulder Tool, Procedia. Eng., 2010, 2(1), p 193–201

    Article  CAS  Google Scholar 

  23. S. Bozzi, A.L. Helbert-Etter, T. Baudin, B. Criqui, and J.G. Kerbigue, Intermetallic Compounds in Al 6016/IF-Steel Friction Stir Spot Welds, Mater. Sci. Eng., A, 2010, 527(16–17), p 4505–4509

    Google Scholar 

  24. V.X. Tran and J. Pan, Fatigue Behavior of Dissimilar Spot Friction Welds in Lap-Shear and Cross-Tension Specimens of Aluminum and Steel Sheets, Int. J. Fatigue, 2010, 32(7), p 1167–1179

    Article  CAS  Google Scholar 

  25. D. Mitlin, V. Radmilovic, T. Pan, J. Chen, Z. Feng, and M.L. Santella, Structure-Properties Relations in Spot Friction Welded (Also Known As Friction Stir Spot Welded) 6111 Aluminum, Mater. Sci. Eng., A, 2006, 441(1–2), p 79–96

    Google Scholar 

  26. D.A. Wang, C.W. Chao, P.C. Lin, and J.Y. Uan, Mechanical Characterization of Friction Stir Spot Microwelds, J. Mater. Process. Technol., 2010, 210(14), p 1942–1948

    Article  Google Scholar 

  27. X. Cao and M. Jahazi, Effect of Tool Rotational Speed and Probe Length on Lap Joint Quality of a Friction Stir Welded Magnesium Alloy, Mater. Des., 2011, 32(1), p 1–11

    Article  Google Scholar 

  28. V.X. Tran, J. Pan, and T. Pan, Fatigue Behavior of Aluminum 5754-O and 6111-T4 Spot Friction Welds in Lap-Shear Specimens, Int. J. Fatigue, 2008, 30(12), p 2175–2190

    Article  CAS  Google Scholar 

  29. Metals Test Methods and Analytical Procedures, Annual Book of ASTM Standards, 03.01,1999, p 78–98, 501–508

  30. D. Wowk and K. Pilkey, Effect of Prestrain with a Path Change on the Strain Rate Sensitivity of AA5754 Sheet, Mater. Sci. Eng., A, 2009, 520(1–2), p 174–178

    Google Scholar 

  31. Y.H. Yin, N. Sun, T.H. North, and S.S. Hu, Hook Formation and Mechanical Properties in AZ31 Friction Stir Spot Welds, J. Mater. Process. Technol., 2010, 210(14), p 2062–2070

    Article  CAS  Google Scholar 

  32. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng., R, 2005, 50, p 1–78

    Article  Google Scholar 

  33. L.E. Murr, G. Liu, and J.C. McClure, Dynamic Recrystallization in Friction-Stir Welding of Aluminium Alloy 1100, J. Mater. Sci. Lett., 1997, 16, p 1801–1803

    Article  CAS  Google Scholar 

  34. H. Jin, S. Saimoto, M. Ball, and P.L. Threadgill, Characterisation of Microstructure and Texture in Friction Stir Welded Joints of 5754 and 5182 Aluminium Alloy Sheets, Mater. Sci. Technol., 2001, 17, p 1605–1614

    CAS  Google Scholar 

  35. Li Ying, L.E. Murr, and J.C. McClure, Flow Visualization and Residual Microstructures Associated with the Friction-Stir Welding of 2024 Aluminum to 6061 Aluminum, Mater. Sci. Eng., 1999, A271, p 213–223

    Google Scholar 

  36. T.R. McNelley, S. Swaminathan, and J.Q. Su, Recrystallization Mechanisms During Friction Stir Welding/Processing of Aluminum Alloys, Scripta Mater., 2008, 58(5), p 349–354

    Article  CAS  Google Scholar 

  37. H.E. Hu, L. Zhen, B.Y. Zhang, L. Yang, and J.Z. Chen, Microstructure Characterization of 7050 Aluminum Alloy During Dynamic Recrystallization and Dynamic Recovery, Mater. Charact., 2008, 59(9), p 1185–1189

    Article  CAS  Google Scholar 

  38. M. Attallah, Microstructure-Property Development in Friction Stir Welds of Aluminium-Based Alloys, PhD Thesis, University of Birmingham UK, Sept 2007, p 222–232

  39. S. Bozzi, A.L. Etter Helbert, T. Baudin, V. Klosek, J.G. Kerbiguet, and B. Criqui, Influence of FSSW Parameters on Fracture Mechanisms of 5182 Aluminium Welds, J. Mater. Process. Technol., 2010, 210(11), p 1429–1435

    Article  CAS  Google Scholar 

  40. P. Su, A. Gerlich, and N. Helbert, Friction Stir Spot Welding of Aluminum and Magnesium Alloy Sheets. SAE Technical Series 2005-01-1255

Download references

Acknowledgments

The authors would like to express their gratitude to Prof. Y. Norman Zhou of University of Waterloo, Canada in getting the sheet metals. The authors are thankful to Prof. N. R. Mandal of Department of Ocean Engineering and Naval Architecture, IIT Kharagpur for extending the milling machine facility to carry out this research work. The authors are also thankful to Mr. Debayan Saha for his help in preparing metallographic samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushanta Kumar Panda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathak, N., Bandyopadhyay, K., Sarangi, M. et al. Microstructure and Mechanical Performance of Friction Stir Spot-Welded Aluminum-5754 Sheets. J. of Materi Eng and Perform 22, 131–144 (2013). https://doi.org/10.1007/s11665-012-0244-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0244-x

Keywords

Navigation