Skip to main content
Log in

Multiphase Resistivity Model for Magnetic Nanocomposites Developed for High Frequency, High Power Transformation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

New power conversion systems that offer promise to transform electricity grids into unified interactive supply networks require high-resistivity soft-magnetic materials to allow for switching of magnetic materials at frequencies approaching 100 kHz for power transformation in the megawatt range. Amorphous and nanocomposite soft-magnetic materials, which represent the state of the art in terms of high power densities and low losses at high frequencies, have resistivities that depend on the structures and spatial distributions of multiple phases in thin ribbons. We present a multiphase resistivity model applicable to nanocomposite materials by considering an equivalent circuit approach considering paths through an amorphous, crystalline, and growth inhibitor shell phase. We detail: (a) identification of amorphous, crystalline, and shell phases; (b) consideration of the role of the morphology of each phase in an equivalent circuit model for the resistance; (c) a two-band model for the Fe/Co composition dependence of the resistivity in crystalline and amorphous phases; (d) a virtual bound state model for resistivity to explain increased resistivity due to early transition-metal growth inhibitors in the shell surrounding the nanocrystalline phase; and (e) disorder effects on amorphous phase resistivity. Experimental design and results for systems of interest in high-frequency power transformation are discussed in the context of our model including: (a) techniques for measurements of cross-section and density, (b) four-point probe and surface resistivity measurements, and (c) measurements in Fe- and Co-rich systems comparing amorphous and nanocomposite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Leary, P.R. Ohodnicki, and M.E. McHenry, JOM 64, 782–788 (2012). doi:10.1007/s11837-012-0350-0.

    Article  Google Scholar 

  2. J. Long, M.E. McHenry, D. Urciuoli, V. Keylin, J. Huth, T. Salem. J. Appl. Phys., 103, 07E7057 (2008). doi:10.1063/1.2829033.

  3. What the Smart Grid Means to America’s Future. (U.S. Department of Energy, 2009), www.smartgrid.gov.

  4. G. Reed, B. Grainger, H. Bassi, E. Taylor, Z. Hong Mao, A. Jones, IEEE PES T&D Conference and Exposition, (2010), pp. 1–10.

  5. A.R. Hefner Jr., IEEE, pp. 1–2, (2008).

  6. Q. Li et al. Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), (2010), pp. 533–539.

  7. W. A. Reass, Components and Technologies for High Frequency and High Average Power Converters in High Megawatt Power Converter Technology R&D Roadmap Workshop. Unpublished Conference Proceedings. (Gaithersburg, MD: National Institute of Standards and Technology, 2008).

  8. W. Reass, C. Burkhart, C. Adolphsen, T. Beukers, R. Cassel, A. De Lira, C. Papas, M. Nguyen, R. Swent, D. Anderson, Proceeding of Particle Accelerator Conference. 2007. PAC. IEEE (Los Alamos, NM: Los Alamos Nat. Lab., 2007). doi:10.1109/PAC.2007.4441262.

  9. W. Reass, C. Adolphsen, T. Beukers, R. Cassel, A. de Lira, C. Papas, M. Nguyen, R. Swent. Converter-Modulator Design and Operations for the ILC L-Band Test Stand. Particle Accelerator Conference (PAC 07) SLAC-PUB-12789. (2007).

  10. M.E. McHenry, M.A. Willard, and D.E. Laughlin, Prog. Mater. Sci. 44, 291–433 (1999). doi:10.1016/S0079-6425(99)00002-X.

    Article  Google Scholar 

  11. M.E. McHenry and D.E. Laughlin, Acta Mater. 48, 223–238 (2000). doi:10.1016/S1359-6454(99)00296-7.

    Article  Google Scholar 

  12. G. Herzer, IEEE Trans. Magn. 26, 1397–1402 (1990).

    Article  Google Scholar 

  13. G. Herzer, Handbook of Magnetic Materials, Vol. 10, ed. K.H.J. Buschow, (Amsterdam: Elsevier, 1997), p. 415.

  14. F. Johnson, C.Y. Um, M.E. McHenry, and H. Garmestami, J. Magn. Magn. Mater. 297, 93–98 (2006). doi:10.1016/j.jmmm.2005.02.056.

    Article  Google Scholar 

  15. P.R. Ohodnicki, M.E. McHenry, D.E Laughlin, J. Appl. Phys. 101, (2007). doi:10.1063/1.2711389.

  16. P.R. Ohodnicki, V. Keylin, H.K. McWilliams, D.E Laughlin, M.E. McHenry. J. Appl. Phys. 103, 07E740-42 (2008). doi:10.1063/1.2839284.

    Google Scholar 

  17. G. Herzer, V. Budinsky, and C. Polak, J. Phys. Conf. Ser., 266 (IOP Publishing, 2011) p. 012010.

  18. S. Kernion, A. Leary, S. Shen, J. Luo, J. Grossman, V. Keylin, J. Huth, M. Lucas, P. Ohodnicki, M. McHenry, Appl. Phys. Lett. 101, 102408–102412 (2012). doi:10.1063/1.4751253.

    Google Scholar 

  19. S. Shen, P.R. Ohodnicki, S.J. Kernion, A. Leary, V. Keylin, J. Huth, M. McHenry, Energy Technology 2012: Carbon Dioxide Management and Other Technologies. Unpublished conference proceedings. (Warrendale, PA: TMS, 2012), p. 265.

  20. S. Shen, S. Kernion, P. Ohodnicki, and M. McHenry, J. Appl. Phys. 112, 103705–103709 (2012). doi:10.1063/1.4765673.

    Article  Google Scholar 

  21. J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958).

    Article  Google Scholar 

  22. B. Corb and R. O’Handley, Phys. Rev. B 31, 7213–7219 (1985).

    Article  Google Scholar 

  23. A. Ghemawat, M. McHenry, and R. O’Handley, J. Appl. Phys. 63, 3388–3390 (1988). doi:10.1063/1.340792.

    Article  Google Scholar 

  24. J. Blazquez, V. Franco, and A. Conde, J. Phys. Condens. Matter. 14, 11717 (2002).

    Article  Google Scholar 

  25. J. Ayers, V. Harris, J. Sprague, and W. Elam, Appl. Phys. Lett. 64, 1994 (974). doi:10.1063/1.110923.

    Google Scholar 

  26. D. Ping, Y. Wu, K. Hono, M. Willard, M. McHenry, and D. Laughlin, Scr. Mater. 45, 781 (2001).

    Article  Google Scholar 

  27. S. Imhoff, J. Ilavsky, F. Zhang, P. Jemian, and P. Evans, J. Appl. Phys. 111, 063525 (2012). doi:10.1063/1.3697654.

    Article  Google Scholar 

  28. M. Ohring, Materials Science of Thin Films. (San Diego: Academic, 1992).

  29. K. Suzuki, N. Kataoka, A. Inoue, A. Makino, and T. Masumoto, Mater. Trans. JIM 31, 743–746 (1999).

    Google Scholar 

  30. A. Hsiao, M. McHenry, D. Laughlin, M. Kramer, C. Ashe, and T. Ohkubo, IEEE Trans. Magn. 38, 3039–3044 (2002). doi:10.1109/TMAG.2002.802434.

    Article  Google Scholar 

  31. A. Hsiao, Z. Turgut, M. Willard, E. Selinger, M. McHenry, and D. Laughlin. MRS Meeting, Vol. 577, Symposium H, (1999), pp. 551–556. doi:10.1557/PROC-577-551.

  32. M. McHenry, F. Johnson, H. Okumura, T. Ohkubo, A. Hsiao, V. Ramanan, and D. Laughlin, Scr. Mater. 48, 881–887 (2003). doi:10.1016/S1359-6462(02)00597-3.

    Article  Google Scholar 

  33. S. Kernion, K. Miller, S. Shen, V. Keylin, J. Huth, and M. McHenry, IEEE Trans. Magn. 47, 3452–3455 (2011). doi:10.1109/TMAG.2011.2157326.

    Article  Google Scholar 

  34. K.J. Miller, A. Wise, A. Leary, D. Laughlin, V. Keylin, J. Huth, M. McHenry, J. Appl. Phys. 107, 09A316-18, (2010). doi:10.1063/1.3350900.

  35. M. McHenry, M. Willard, H. Iwanabe, R. Sutton, Z. Turgut, A. Hsiao, and D. Laughlin, Bull. Mater. Sci. 22, 495–501 (1999). doi:10.1007/BF02749961.

    Article  Google Scholar 

  36. M. Willard, D. Laughlin, M. McHenry, D. Thoma, K. Sickafus, J. Cross, and V. Harris, J. Appl. Phys. 84, 6773–6777 (1998). doi:10.1063/1.369007.

    Article  Google Scholar 

  37. H. Iwanabe, M. McHenry, B. Lu, and D. Laughlin, J. Appl. Phys. 85, 4424–4426 (1999).

    Article  Google Scholar 

  38. M. Lucas, et al., Mater. Sci. Eng. B 176, 1079–1084 (2011).

    Article  Google Scholar 

  39. F. Johnson, H. Garmestami, S. Chu, M. McHenry, and D. Laughlin, IEEE Trans. Magn. 40, 2697–2699 (2004). doi:10.1109/TMAG.2004.832278.

    Article  Google Scholar 

  40. P. Ohodnicki, J. Long, D. Laughlin, M. McHenry, V. Keylin, and J. Huth, J. Appl. Phys. 104, 113909 (2008). doi:10.1063/1.3021141.

    Article  Google Scholar 

  41. C. Um, F. Johnson, M. Simone, J. Barrow, M. McHenry, J. Appl. Phys. 97, 10F504-10F504-3, (2005). doi:10.1063/1.1855173.

  42. S. Kernion, M. Lucas, J. Horwath, Z. Turgut, E. Michel, V. Keylin, J. Huth, S. Shen, A. Leary, M. McHenry, J. Appl. Phys. 113, 17A306-08, (2013). doi:10.1063/1.4794131.

  43. A. Leary, S. Kernion, M. Lucas, P. Ohodnicki, M. McHenry, J. Appl. Phys. 113, 17A317-319, (2013). doi:10.1063/1.4795326.

  44. N.F. Mott, Adv. Phys. 13, 325 (1964).

    Article  Google Scholar 

  45. K. Schwarz, et al., J. Phys. F 14, 2659–2671 (1984).

    Article  Google Scholar 

  46. P. Ohodnicki Jr, et al., Acta Mater. 57, 87–96 (2009).

    Article  Google Scholar 

  47. D. Naugle, J. Phys. Chem. Solids 45, 367–388 (1984).

    Article  Google Scholar 

  48. M. Zhang and D. Drabold, Phys. Rev. B 81, 085210 (2010).

    Article  Google Scholar 

  49. P. Tulip, J. Staunton, S. Lowitzer, D. Kodderitzsch, and H. Ebert, Phys. Rev. B 77, 165116 (2008).

    Article  Google Scholar 

  50. B. Velicky, Phys. Rev. 184, 614–627 (1969).

    Article  Google Scholar 

  51. A. Marmodoro, J. Staunton, J. Phys. Conf. Ser., 286, 012033, (2011).

  52. A. Kuzemsky, Int. J. Mod. Phys. B 25, 3071–3083 (2011).

    Article  Google Scholar 

  53. J. Ziman, Philos. Mag. 6, 1013–1034 (1961).

    Article  Google Scholar 

  54. A. Sinha, Phys. Rev. B. 1, 4541 (1970).

    Article  Google Scholar 

  55. L. Meisel and P. Cote, Phys. Rev. B 30, 1743–1753 (1984).

    Article  Google Scholar 

  56. D. Sanchez-Portal, P. Ordejon, E. Canadell. Structure and Bonding, (Berlin, 2004) pp. 103.

  57. N. Mott, E. Davis. Electronic Processes in Non-Crystalline Materials, 2 Edn. (Oxford: Oxford University Press, 1971, 1979).

  58. P. Anderson, Local Moments and Localized States, Nobel Lecture, Dec. 8, (Princeton, NJ: Bell Laboratories, 1977).

  59. A. Clogston, B. Matthias, M. Peter, H. Williams, E. Corenzwit, and R. Sherwood, Phys. Rev. 125, 541 (1962).

    Article  Google Scholar 

  60. B. Corb, N. Grant, and R. O’Handley, J. Appl. Phys. 53, 7728 (1982).

    Article  Google Scholar 

  61. B. Corb, Phys. Rev. B 31, 2521 (1985).

    Article  Google Scholar 

  62. A. Malozemoff, A. Williams, and V. Moruzzi, Phys. Rev. B 29, 1620 (1984).

    Article  Google Scholar 

  63. K. Terakura, Physica 91B, 162 (1977).

    Google Scholar 

  64. U. Fano, Phys. Rev. B124, 1866 (1961).

    Article  Google Scholar 

  65. R. O’Handley, J. Appl. Phys. 62, 3225 (1987).

    Article  Google Scholar 

  66. M. McHenry, D. Vvedensky, M. Eberhart, and R. O’Handley, Phys. Rev. B 37, 10887–10890 (1988). doi:10.1103/PhysRevB.37.10887.

    Article  Google Scholar 

  67. M. Hundley, M. McHenry, R. Dunlap, V. Srinivas, and D. Bahadur, Philos. Mag. B 66, 239–250 (1992). doi:10.1080/13642819208224587.

    Article  Google Scholar 

  68. M. McHenry, R. O’Handley, W. Dmowski, and T. Egami, J. Appl. Phys. 61, 4232–4236 (1987). doi:10.1063/1.338484.

    Article  Google Scholar 

  69. D. Vvedensky, M. Eberhart, and M. McHenry, Phys. Rev. B 35, 2061–2063 (1987). doi:10.1103/PhysRevB.35.2061.

    Article  Google Scholar 

  70. M. McHenry and J. MacLaren, Phys. Rev. B 43, 10611–10616 (1991). doi:10.1103/PhysRevB.43.10611.

    Article  Google Scholar 

  71. M. McHenry, J. MacLaren, and D. Clougherty, J. Appl. Phys. 70, 5932–5934 (1991). doi:10.1063/1.350109.

    Article  Google Scholar 

  72. M. McHenry, J. MacLaren, D. Vvedensky, M. Eberhart, and M. Prueitt, Phys. Rev. B 40, 10111–10115 (1989). doi:10.1103/PhysRevB.40.10111.

    Article  Google Scholar 

  73. D. Schroder, Semiconductor Material and Device Characterization (Hoboken, NJ: Wiley, 2006).

    Google Scholar 

  74. F. Smits, Bell Syst. Tech. J. 37, 711–718 (1958).

    Article  Google Scholar 

  75. L. Valdes, Proc. IRE 42, 420–427 (1954).

    Article  Google Scholar 

  76. M. Yamashit and M. Agu, Jpn. J. Appl. Phys. 23, 1499–1504 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. DeGeorge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeGeorge, V., Shen, S., Ohodnicki, P. et al. Multiphase Resistivity Model for Magnetic Nanocomposites Developed for High Frequency, High Power Transformation. J. Electron. Mater. 43, 96–108 (2014). https://doi.org/10.1007/s11664-013-2835-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2835-1

Keywords

Navigation