Skip to main content
Log in

Control of Interface Traps in HfO2 Gate Dielectric on Silicon

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of postdeposition annealing (PDA) on the interface between HfO2 high-k dielectric and bulk silicon were studied in detail. The key challenges of successfully adopting the high-k dielectric/Si gate stack into advanced complementary metal–oxide–semiconductor (CMOS) technology are mostly due to interfacial properties. We have proposed a PDA treatment at 600°C for several different durations (5 min to 25 min) in nitrogen or oxygen (95% N2 + 5% O2) ambient with a 5-nm-thick HfO2 film on a silicon substrate. We found that oxidation of the HfO2/Si interface, removal of the deep trap centers, and crystallization of the film take place during the postdeposition annealing (PDA). The optimal PDA conditions for low interface trap density were found to be dependent on the PDA duration. The formation of an amorphous interface layer (IL) at the HfO2/Si interface was observed. The growth was due to oxygen incorporated during thermal annealing that reacts with the Si substrate. The interface traps of the bonding features, defect states, and hysteresis under different PDA conditions were studied using x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), transmission electron microscopy (TEM), and leakage current density–voltage (JV) and capacitance–voltage (CV) techniques. The results showed that the HfO2/Si stack with PDA in oxygen showed better physical and electrical performance than with PDA in nitrogen. Therefore, PDA can improve the interface properties of HfO2/Si and the densification of HfO2 thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 89, 5243 (2001).

    Article  CAS  ADS  Google Scholar 

  2. S.Y. Tan, Microelectron. J. 38, 783 (2007).

    Article  CAS  Google Scholar 

  3. M.H. Cho, D.H. Ko, Y.G. Choi, K. Jeong, D.Y. Noh, H.J. Kim, and C.N. Whang, J. Vac. Sci. Technol. A 19, 192 (2001).

    Article  CAS  ADS  Google Scholar 

  4. I. De, D. Johri, A. Srivastava, and C.M. Osburn, Solid-State Electron. 44, 1077 (2000).

    Article  CAS  ADS  Google Scholar 

  5. R. Jiang, E.Q. Xie, and Z.F. Wang, Appl. Phys. Lett. 89, 2907 (2006).

    Google Scholar 

  6. D. Schmeiser and E. Zschech, Mater. Sci. Semicon. Proc. 9, 934 (2006).

    Article  Google Scholar 

  7. S.J. Chang, W.C. Lee, J. Hwang, M. Hong, and J. Kwo, Thin Solid Films 516, 948 (2008).

    Article  CAS  ADS  Google Scholar 

  8. S. Spiga, C. Wiemer, G. Tallarida, G. Scarel, S. Ferrari, G. Seguini, and M. Fanciulli, Appl. Phys. Lett. 87, 112904 (2005).

    Article  ADS  Google Scholar 

  9. K. Maitra and V. Misra, IEEE Electron. Dev. Lett. 24, 707 (2003).

    Article  CAS  ADS  Google Scholar 

  10. G. Pourtois, A. Lauwers, J. Kittl, L. Pantisano, B. Soree, S. De Gendt, W. Magnus, M. Heyns, and K. Maex, Microelectron. Eng. 80, 272 (2005).

    Article  CAS  Google Scholar 

  11. S.Y. Tan, J. Electron. Mater. 38, 2314 (2009).

    Article  CAS  ADS  Google Scholar 

  12. K.P. Bastosa, C. Driemeiera, R.P. Pezzia, G.V. Soaresa, L. Miottia, J. Moraisa, I.J.R. Baumvolb, and R.M. Wallace, Mater. Sci. Eng. B 112, 134 (2004).

    Article  Google Scholar 

  13. A. Lauwers, M. de Potter, O. Chamirian, R. Lindsay, C. Demeurisse, C. Vrancken, and K. Maex, Microelectron. Eng. 64, 131 (2002).

    Article  CAS  Google Scholar 

  14. M.-H. Cho, Y.S. Roh, C.N. Whang, K. Jeong, S.W. Nahm, D.-H. Ko, J.H. Lee, N.I. Lee, and K. Fujihara, Appl. Phys. Lett. 81, 472 (2002).

    Article  CAS  ADS  Google Scholar 

  15. V. Mikhelashvili and G. Eisenstein, J. Appl. Phys. 89, 3256 (2001).

    Article  CAS  ADS  Google Scholar 

  16. T. Tan, Z. Liu, H. Lu, W. Liu, and H. Tian, Opt. Mater. 32, 432 (2010).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, S.Y. Control of Interface Traps in HfO2 Gate Dielectric on Silicon. J. Electron. Mater. 39, 2435–2440 (2010). https://doi.org/10.1007/s11664-010-1323-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1323-0

Keywords

Navigation