Skip to main content
Log in

The Dependence of Portevin–Le Châtelier Effect on the γ′ Precipitates in a Wrought Ni-Base Superalloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The dependence of Portevin–Le Châtelier (PLC) effect on the γ′ precipitates of the Nimonic 263 alloy in different microstructural conditions has been studied by analyzing the parameters of the tensile curves and the deformation mechanisms. It is shown that the γ′ precipitates with different sizes, edge-to-edge interprecipitate distance, and areal number density are obtained by altering the aging time. It is demonstrated that when the mean size of the γ′ precipitates is less than 28 nm (aging less than 25 hours), the deformation mechanisms are dominated by APB-coupled a/2〈101〉 dislocations shearing the small γ′ precipitates and the slip bands continuously cutting the γ and γ′ phases. When the γ′ size is between 28 and 45 nm (aging time between 25 and 50 hours), the deformation mechanism is controlled by the APB-coupled a/2〈101〉 dislocations shearing the small γ′ precipitates, the a/6〈112〉 Shockley partial dislocation continuously shearing the γ and γ′ phases combined with matrix dislocations by-passing the γ′ precipitates; If the γ′ size over 45 nm (aging time more than 50 hours), Orowan by-passing becomes the main deformation mechanism. Moreover, with increasing the aging time, the critical plastic strain for the onset of the PLC effect increases and reaches a maximum after aging for 50 hours, and then gradually decreases. At last, the dependence of critical plastic strain on the deformation mechanisms is well explained by the elementary incremental strain (γ). The precipitation process of the γ′ phase can directly influence the PLC effect by changing the interactions among solutes atoms, mobile dislocations, and forest dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.H. Cottrell: Philos. Mag., 1953, vol. 44, pp. 829-32.

    Article  Google Scholar 

  2. P.G. McCormick: Acta Metall., 1972, vol. 20, pp. 351-54.

    Article  Google Scholar 

  3. A.V.D. Beukel: Phys. Status Solid, 1975, vol. 30, pp. 197-206.

    Article  Google Scholar 

  4. C. Cornet, K. Wackermann, C. Stöcker, H.-J. Christ, C. Lupton, M. Hardy, J. Tong: Met High Temp., 2014, vol. 31, pp. 226-32.

    Article  Google Scholar 

  5. R.A. Mulford and U. F. Kocks: Acta Metall., 1979, vol. 27, pp. 1125-34.

    Article  Google Scholar 

  6. K. Gopinath, A.K. Gogia, S.V. Kamat, and U. Ramamurty: Acta Mater., 2009, vol. 57, pp. 1243-53.

    Article  Google Scholar 

  7. S.H. Fu, T. Cheng, Q.C. Zhang, Q. Hu, and P.T. Cao: Acta Mater., 2012, vol. 60, pp. 6650-65.

    Article  Google Scholar 

  8. G.M. Han, C.G. Tian, Z.K. Chu, C.Y. Cui, Z.Q. Hu, and X.F. Sun: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 4629-35.

    Article  Google Scholar 

  9. B. Max, B. Viguier, E. Andrieu, and J.M. Cloue: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5431-41.

    Article  Google Scholar 

  10. P. Fernandez-Zelaia, B.S. Adair, V.M. Barker, S.D. Antolovich: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5596-609.

    Article  Google Scholar 

  11. T. E. Moss and G.S. Was: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3428-32.

    Article  Google Scholar 

  12. C.Y. Cui, C.G. Tian, Y.Z. Zhou, T. Jin, X.F. Sun: in Superalloys 2012, E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, J. Telesman, eds., TMS, Warrendale, PA, 2012, pp. 715–22.

  13. D.L. Sun, D.Z. Yang, and T.Q. Lei: Mater. Chem. Phys., 1990, vol. 25, pp. 307-13.

    Article  Google Scholar 

  14. S.A. Nalawade, M. Sundararaman, R. Kishorea, and J.G. Shah: Scripta Mater., 2008, vol. 59, pp. 991-94.

    Article  Google Scholar 

  15. S. Kumar and E. Pink: Scripta Metall. Mater., 1995, vol. 32, pp. 749-53.

    Article  Google Scholar 

  16. S. Kumar and H.B. McShane: Scripta Metall. Mater., 1993, vol, 28, pp. 1149-54.

    Article  Google Scholar 

  17. F. Chmelík, E. Pink, J. Król, J. Balík, J. Pešička, and P. Lukáč: Acta Mater., 1998, vol. 46, pp. 4435-42.

    Article  Google Scholar 

  18. C.Y. Cui, Y.F. Gu, Y. Yuan, T. Osada, and H. Harada: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5465-69.

    Article  Google Scholar 

  19. Y. Yuan, Y.F. Gu, T. Osada, Z.H. Zhong, T. Yokokawa, and H. Harada: Scripta Mater., 2012, vol. 67, pp. 137-40.

    Article  Google Scholar 

  20. T. Osada, Y.F. Gu, N. Nagashima, Y. Yuan, T. Yokokawa, and H. Harada: Acta Mater., 2013, vol. 61, pp. 1820-29.

    Article  Google Scholar 

  21. B.D. Fu, K. Du, G.M. Han, C.Y. Cui, and J.X. Zhang: Mater. Lett., 2015, vol. 152, pp. 272-75.

    Article  Google Scholar 

  22. C.Y. Cui, Y.F. Gu, Y. Yuan, and H. Harada: Scripta Mater., 2011, vol. 64, pp. 502-505.

    Article  Google Scholar 

  23. I.M. Lifshitz and V.V. Slyozov: Phys. Chem. Solids., 1961, vol. 19, pp. 35-50.

    Article  Google Scholar 

  24. A.J. Ardell: Acta Metall., 1972, vol. 20, pp. 61-71.

    Article  Google Scholar 

  25. B. Décamps, S. Raujol, A. Coujou, F. Pettinari-Sturmel, N. Clément, D. Locq, P. Caron: Philos. Mag., 2004, vol. 84, pp. 91-107.

    Article  Google Scholar 

  26. R.C. Picu: Acta Mater., 2004, vol. 52, pp. 3447-58.

    Article  Google Scholar 

  27. W.A. Curtin, D.L. Olmsted, and L.G. Hector Jr: Nat. Mater., 2006, vol. 5, pp. 875-80.

    Article  Google Scholar 

  28. L.P. Kubin and Y. Estrin: Acta Metall. Mater., 1990, vol. 38, pp. 697-708.

    Article  Google Scholar 

  29. P. Penning: Acta Metall., 1972, vol. 20, pp. 1169-75.

    Article  Google Scholar 

  30. C.P. Ling, P.G. McCormick: Acta Metall. Mater., 1993, vol. 41, pp. 3127-31.

    Article  Google Scholar 

  31. J. Guillot and J. Grilhe: Acta Metall., 1972, vol. 20, pp. 291-95.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support provided by the High Technology Research and Development Program of China (No. 2014AA041701) and the National Natural Science Foundation of China (NSFC) under Grant Nos. 51171179, 11332010, 51271174, and 51401210 for carrying out the present research work is gratefully acknowledged. The authors are grateful to Zhiwu Shi (Institute of Metal Research) for the useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanyong Cui.

Additional information

Manuscript submitted November 1, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Han, G., Cui, C. et al. The Dependence of Portevin–Le Châtelier Effect on the γ′ Precipitates in a Wrought Ni-Base Superalloy. Metall Mater Trans A 47, 5994–6003 (2016). https://doi.org/10.1007/s11661-016-3718-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3718-x

Keywords

Navigation