Skip to main content
Log in

Influence of Cooling Rate on the Enthalpy Relaxation and Fragility of a Metallic Glass

  • Symposium: Materials Behavior: Far from Equilibrium
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Structural relaxation behavior of a rapidly quenched (RQ) and a slowly cooled Pd40Cu30Ni10P20 metallic glass was investigated and compared. Differential scanning calorimetry was employed to monitor the relaxation enthalpies at the glass transition temperature, T g , and the Kolrausch–Williams–Watts (KWW) stretched exponential function was used to describe its variation with annealing time. It was found that the rate of enthalpy recovery is higher in the ribbon, implying that the bulk is more resistant to relaxation at low temperatures of annealing. This was attributed to the possibility of cooling rate affecting the locations where the glasses get trapped within the potential energy landscape. The RQ process traps a larger amount of free volume, resulting in higher fragility, and in turn relaxes at the slightest thermal excitation (annealing). The slowly cooled bulk metallic glass (BMG), on the other hand, entraps lower free volume and has more short-range ordering, hence requiring a large amount of perturbation to access lower energy basins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I.M. Hodge: J. Non-Cryst. Solids, 1994, vol. 169, pp. 211–66

    Article  CAS  Google Scholar 

  2. M.H. Cohen, D. Turnbull: J. Chem. Phys., 1959, vol. 31, pp. 1164–69

    Article  CAS  Google Scholar 

  3. O.P. Bobrov, V.A. Khonik, K. Kitagawa, S.N. Laptev: J. Non-Cryst. Solids, 2004, vol. 342, pp. 152–59

    Article  CAS  Google Scholar 

  4. C. Nagel, K. Ratzke, E. Schmidtke, J. Wolff, U. Geyer, and F. Faupel: Phys. Rev. B, 1998, vol. 57, pp. 10224–27

    Article  CAS  Google Scholar 

  5. A.E. Berlev, O.P. Bobrov, V.A. Khonik, K. Csach, A. Jurikova ,J. Miskuf, H. Neuhauser, M.Y. Yazvitsky: Phys. Rev. B, 2003, vol. 68, pp. 132203–132204

    Article  Google Scholar 

  6. U. Ramamurty, M.L. Lee, J. Basu, Y. Li: Scripta Mater., 2002, vol. 47, pp. 107–11

    Article  CAS  Google Scholar 

  7. H.W. Jin, R. Ayer, J.Y. Koo, R. Raghavan, U. Ramamurty: J. Mater. Res., 2007, vol. 22, pp. 264–73

    Article  CAS  Google Scholar 

  8. R. Raghavan, P. Murali, U. Ramamurty: Intermetallics, 2006, vol. 14, pp. 1051–54

    Article  CAS  Google Scholar 

  9. O.P. Bobrov, K. Csach, S.V. Khonik, K. Kitagawa, S.A. Lyakhov, M. Yu. Yazvitsky, V.A. Khonik: Scripta Mater., 2007, vol. 56, pp. 29–32

    Article  CAS  Google Scholar 

  10. N. Nishiyama, A. Inoue: Mater. Trans. JIM, 1997, vol. 38, pp. 464–72

    CAS  Google Scholar 

  11. W.H. Jiang, F.X. Liu, Y.D. Wang, H.F. Zhang, H. Choo, P.K. Liaw: Mater. Sci. Eng. A, 2006, vol. 430, pp. 350–54

    Article  Google Scholar 

  12. K.L. Ngai: Non-Debye Relaxation in Condensed Matter, World Scientific, Singapore, 1987

    Google Scholar 

  13. R. Bohmer, K.L. Ngai, C.A. Angell, D.J. Plazek: J. Chem. Phys., 1993, vol. 99, p. 4201

    Article  Google Scholar 

  14. C.A. Angell: J. Non-Cryst. Solids, 1991, vols. 131–133, pp. 13–31

    Article  Google Scholar 

  15. C.A. Angell: J. Phys. Chem. Solids, 1988, vol. 49, p. 863

    Article  CAS  Google Scholar 

  16. G.J. Fan, J.F. Loffler, R.K. Wunderlich, H.-J. Fetch: Acta Mater., 2004, vol. 52, pp. 667–74

    Article  CAS  Google Scholar 

  17. O.P. Bobrov, K. Csach, V.A. Khonik, S.N. Laptev, and M.Y. Yazvitsky: Scripta Mater., 2006, vol. 54, pp. 369–73

    Article  CAS  Google Scholar 

  18. M. Weiss, M. Moske, K. Samwer: Appl. Phys. Lett., 1996, vol. 69, pp. 3200–02

    Article  CAS  Google Scholar 

  19. D. Su, R.H. Dauskardt: J. Mater. Res., 2003, vol. 17, pp. 1254–57

    Google Scholar 

  20. P. Murali, U. Ramamurty: Acta Mater., 2005, vol. 53, pp. 1467–78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor S. Ranganathan for his valuable input and Dr. N. Nishiyama for providing the metallic glass samples examined in this study. The authors acknowledge the assistance rendered by Mr. P. Padaikathan in conducting the DSC experiments. This research work was funded by a grant from the Defense Research and Development Organization, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Ramamurty.

Additional information

This article is based on a presentation given in the symposium entitled “Materials Behavior: Far from Equilibrium” as part of the Golden Jubilee Celebration of Bhabha Atomic Research Centre, which occurred December 15–16, 2006 in Mumbai, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghavan, R., Murali, P. & Ramamurty, U. Influence of Cooling Rate on the Enthalpy Relaxation and Fragility of a Metallic Glass. Metall Mater Trans A 39, 1573–1577 (2008). https://doi.org/10.1007/s11661-007-9262-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9262-y

Keywords

Navigation