Skip to main content

Advertisement

Log in

High-pressure, laser-driven deformation of an aluminum alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Recent development of a laser-based experimental platform allows loading materials to high pressures in the solid state while controlling both strain rate and peak pressure. The drive utilizes momentum transfer from a plasma generated by the introduction of a strong shock in a reservoir of low-Z material. This study looks at the response of a commercial aluminum alloy (6061-T6) subjected to pressures of 18 and 40 GPa at strain rates of 107/s and 5 × 107/s, respectively. It was found that the depth of the crater formed on the sample surface is a good indicator of the general yield behavior of the material and that a relatively simple strength model prevails under the loading conditions considered here. Metallographic examination of recovered samples showed no evidence of shear-band formation or significant melting due to plasma-surface interactions. Crystal plasticity-based calculations were used to assess the effects of material texture. Lack of shear-band formation during the laser-based drive is rationalized by considering the strain gradient as compared to grain size and texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.H. Kalantar, B.A. Remington J.D. Colvin, D.M. Gold, K.O. Mikaelian, S.V. Weber, and L.G. Wiley: American Institute of Physics Conf. Proc., 2000, No. 505, Part 2, pp. 1193–97.

  2. M.A. Meyers, F. Gregori, B.K. Kad, M.S. Schneider, D.H. Kalantar, B.A. Remington, G. Ravichandran, T. Boehly, and J.S. Wark: Acta Mater., 2003, vol. 51, p. 1211.

    Article  CAS  Google Scholar 

  3. J. Edwards, K.T. Lorenz, B.A. Remington, S. Pollaine, J. Colvin, D. Braun, B.F. Lasinski, D. Reisman, J.M. McNaney, J.A. Greenough, R. Wallace, H. Louis, and D. Kalantar: Phys. Rev. Let., 2004, in press.

  4. J.F. Barnes, P.J. Blewett, R.G. McQueen, K.A. Meyer, and D. Venable: J. Appl. Phys. 1974, vol. 45 (2), p. 727.

    Article  Google Scholar 

  5. A.I. Lebedev, P.N. Nizovtsev, and V.A. Rayevsky: in Proc. 4th Int. Workshop on the Physics of Compressible Turbulent Mixing, Cambridge University Press, Cambridge, United Kingdom, 1993.

    Google Scholar 

  6. A.I. Lebedev, P.N. Nizovtsev, V.A. Rayevsky, and V.P. Solov’ev: Dokl. Akad. Nauk, vol. 349 (MAIK Nauka/Interperiodica Publishing, Moscow, 1996); translation: Phys. Dokl., 1996, vol. 41, p. 328.

    Google Scholar 

  7. C.A. Hall: Phys. Plas., 2000, vol. 7 (5), p. 2069.

    Article  CAS  Google Scholar 

  8. C.A. Hall, J.R. Asay, M.D. Knudson, W.A. Stygar, R.B. Spielman, T.D. Pointon, D.B. Reisman, A. Toor, and R.C. Cauble: Rev. Sci. Instrum., 2001, vol. 72 (9), p. 3587.

    Article  CAS  Google Scholar 

  9. D.B. Reisman, A. Toor, R.C. Cauble, C.A. Hall, J.R. Asay, M.D. Knudson, and M.D. Furnish: J. App. Phys., 2001, vol. 89 (3), p. 1625.

    Article  CAS  Google Scholar 

  10. Electron Backscatter Diffraction in Materials Science, A.J. Schwartz, M. Kumar, and B.L. Adams, eds., Kluwer Academic/Plenum Publishers, New York, NY, 2000.

    Google Scholar 

  11. B.A. Remington, G. Bazan, J. Belak, E. Bringa, M. Caturla, J.D. Colvin, M.J. Edwards, S.G. Glendinning, D.S. Ivanov, B. Kad, D.H. Kalantar, M. Kumar, B.F. Lasinski, K.T. Lorenz, J.M. McNaney, D.D. Meyerhofer, M.A. Meyers, S.M. Pollaine, D. Rowley, M. Schneider, J.S. Stölken, J.S. Wark, S.V. Weber, W.G. Wolfer, B. Yaakobi, and L.V. Zhigilei: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2587–2607.

    CAS  Google Scholar 

  12. E. Dube, R. Neely, A. Nichols, R. Sharp, and R. Couch: Users Manual for ALE3D-An Arbitrary Lagrange/Eulerian 3-D Code System, Lawrence Livermore National Laboratory, Livermore, CA, 2001.

    Google Scholar 

  13. D. Peirce, R.J. Asaro, and A. Needleman: Acta Metall., 1982, vol. 30 (6), pp. 1087–1119.

    Article  CAS  Google Scholar 

  14. R. Tipton, R. Managan, and P. Amala: Users Manual for CALE, Lawrence Livermore National Laboratory, Livermore, CA, 2002.

    Google Scholar 

  15. D.J. Steinberg, S.G. Cochran, and M.W. Guinan: J. Appl. Phys., 1980, vol. 51, p. 1496.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation given in the symposium “Dynamic Deformation: Constitutive Modeling, Grain Size, and Other Effects: In Honor of Prof. Ronald W. Armstrong,” March 2–6, 2003, at the 2003 TMS/ASM Annual Meeting, San Diego, California, under the auspices of the TMS/ASM Joint Mechanical Behavior of Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNaney, J.M., Edwards, M.J., Becker, R. et al. High-pressure, laser-driven deformation of an aluminum alloy. Metall Mater Trans A 35, 2625–2631 (2004). https://doi.org/10.1007/s11661-004-0208-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0208-3

Keywords

Navigation