Skip to main content
Log in

Optical properties of Au nanoparticles coated on surface of glass or anodic aluminum oxide template

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Au nanoparticles coated on the surface of glass (Sample A) or on anodic aluminum oxide template surface (Sample B) were prepared using titanium dioxide sol-gel doped with chloroauric acid and with a reduction process. FE-SEM, UV-Vis spectrum and Fluorescence spectrum tests show that Au nanoparticles have been distributed randomly on the surface of glass, while deposition occurs on the surface of regular hollows for anodic aluminum oxide template. A sharp absorption peak appears at the wavelength of 536 nm for sample B, while there is a red shift, with a broader peak for sample A. A distinct fluorescence emission at the wavelength of 633 nm is detected for sample A, but no noticeable fluorescence emission has been found for Sample B. The results indicate that the microstructure and optical properties of Au nanoparticles can be modulated by different substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A R Tao, P D Yang. Polarized Surface-enhanced Raman Spectroscopy on Coupled Metallic Nanowires[J]. J. Phys. Chem. B, 2005, 109: 15 687–15 690

    CAS  Google Scholar 

  2. R D Coso, J R Isidro, J Solis, et al. Third Order Nonlinear Optical Susceptibility of Cu:Al2O3 Nanocomposites: from Spherical Nanoparticles to the Percolation Threshold[J]. J. Appl. Phys., 2004, 95: 2 755–2 763

    Google Scholar 

  3. M L Sandrock, C A Foss. Synthesis and Linear Optical Properties of Nanoscopic Gold Particle Pair Structures[J]. J. Phys. Chem. B, 1999, 103: 11 398–11 406

    CAS  Google Scholar 

  4. Q Q Wang, J B Han, H M Gong, et al. Linear and Nonlinear Optical Properties of Ag Nanowire Polarizing Glass[J]. Adv.Fun. Mat., 2006, 16: 2 405–2 408

    CAS  Google Scholar 

  5. G Frens. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions[J]. Nature Phys. Sci., 1973, 241:20–22

    CAS  Google Scholar 

  6. R C Jin, Y W Cao, C A Mirkin, et al. Photoinduced Conversion of Silver Nanospheres to Nanoprisms[J]. Science, 2001, 294:1 901–1 903

    CAS  Google Scholar 

  7. F Kim, J H Song, P Yang. Photochemical Synthesis of Gold Nanorods[ J]. J. Am.Chem.Soc., 2002, 124: 14 316–14 317

    CAS  Google Scholar 

  8. C D Geddes, J R Lakowicz. Metal-enhanced Fluorescence[J]. Journal of Fluorescence, 2002, 12:121–129

    Article  Google Scholar 

  9. G Decher. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites[J]. Science, 1997, 277:1 232–1 237

    Article  CAS  Google Scholar 

  10. X Li, W Xu, J Zhang, et al. Self-assembled Metal Colloid Films: Two Approaches for Preparing New SERS Active Substrates[J]. Langmuir, 2004, 20:1 298–1 304

    CAS  Google Scholar 

  11. L Q Jing, X Q Li, S D Li, et al. XPS and SPS Studies on Nanometer Au/TiO2 Photocatalyst[J]. Chinese Journal of Catalysis, 2005, 26:189–193

    CAS  Google Scholar 

  12. G C Papavassiliou. Optical Properties of Small Inorganic and Organic Metal Particles[J]. Prog. Solid State Chem., 1979, 12:185–271

    Article  CAS  Google Scholar 

  13. S Link, M A El-Sayed. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles[J]. J. Phys. Chem. B, 1999, 103: 4 212–4 217

    CAS  Google Scholar 

  14. B M Zande, M R Bohmer, L G Fokkink, et al. Catalytic Activity of CO2 Reduction on Pt Single-crystal Electrodes: Pt(S)-[n(111)_(111)], Pt(S)-[n(111)_(100)], and Pt(S)-[n(100)_(111)] [J]. J. Phys. Chem. B, 1997, 101:8 520–8 524

    Google Scholar 

  15. S Link, M Mohamed, M A El-Sayed. Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant[J]. J.Phys. Chem.B, 1999, 103:3 073–3 077

    CAS  Google Scholar 

  16. J Zhu, Y C Wang, L Q Huang. Simulation of the Medium Dielectric Constant Dependent Optical Properties for Gold Nanosphere[J]. Materials Chemistry and Physics, 2005, 93:383–387

    Article  CAS  Google Scholar 

  17. J H Liao, Y Zhang, W Yu. Linear Aggregation of Gold Nanoparticles in Ethanol[J]. Colloids Surf. A, 2003, 223:177–183

    Article  CAS  Google Scholar 

  18. M B Mohamed, V Volkov, S Link, et al. The ‘Lightning’ Gold Nanorods: Fluorescence Enhancement of Over a Million Compared to the Gold Metal[J]. Chem. Phys. Letters, 2000, 317:517–523

    Article  CAS  Google Scholar 

  19. J Zhu, Y C Wang, W Qin. Fluorescence Characteristics of Au Colloidal Nonoparticles[J]. Acta Photonica Sinica, 2003, 3:357–360

    Google Scholar 

  20. J Zhu, Y C Wang, S N Yan. Fluorescence Spectrum Characteristics of Gold Nanorods[J]. Chin.Phys.Lett., 2004, 21:559–561

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujian Zhao  (赵修建).

Additional information

Funded by Hubei Province Natural Science Foundation (No. 2011CDB426), and the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No. 705036)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, J., Wu, C., Ma, X. et al. Optical properties of Au nanoparticles coated on surface of glass or anodic aluminum oxide template. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 27, 897–901 (2012). https://doi.org/10.1007/s11595-012-0570-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-012-0570-8

Key words

Navigation