Skip to main content
Log in

Synaptic consolidation: an approach to long-term learning

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Synaptic plasticity is thought to be the basis of learning and memory, but it is mostly studied on the timescale of mere minutes. This review discusses synaptic consolidation, a process that enables synapses to retain their strength for a much longer time (days to years), instead of returning to their original value. The process involves specific plasticity-related proteins, and depends on the dopamine D1/D5 receptors. Here, we review the research on synaptic consolidation, describing electrophysiology experiments, recent modeling work, as well as behavioral correlates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amit D, Fusi S (1994) Learning in neural networks with material synapses. Neural Comput 6:957–982

    Article  Google Scholar 

  • Artola A, Bröcher S, Singer W (1990) Different voltage dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347:69–72

    Article  PubMed  CAS  Google Scholar 

  • Ballarini F, Moncada D, Martinez MC, Alen N, Viola H (2009) Behavioral tagging is a general mechanism of long-term memory formation. Proc Natl Acad Sci USA 106:14599–14604

    Article  PubMed  CAS  Google Scholar 

  • Barrett A, Billings G, Morris R, van Rossum M (2009) State based model of long-term potentiation and synaptic tagging and capture. PLoS Comp Biol 5(1):e1000259. doi:10.1371/journal.pcbi.1000259

    Article  Google Scholar 

  • Bi G, Poo M (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472

    PubMed  CAS  Google Scholar 

  • Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2(1):32–48

    PubMed  CAS  Google Scholar 

  • Bliss T, Lomo T (1973) Long-lasting potentation of synaptic transmission in the dendate area of anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:351–356

    Google Scholar 

  • Clopath C, Gerstner W (2010) Voltage and spike timing interact in stdp: a unified model. Frontiers in synaptic neuroscience doi:10.3389/fnsyn.2010.00025

  • Clopath C, Vasilaki E, Buesing L, Gerstner W (2010) Connectivity reflects coding: a model of voltage-based spike-timing-dependent-plasticity with homeostasis. Nat Neurosci 13:344–352

    Article  PubMed  CAS  Google Scholar 

  • Clopath C, Ziegler L, Vasilaki E, Büsing L, Gerstner W (2008) Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS Comput Biol 4(12):e1000248. doi:10.1371/journal.pcbi.1000248

  • Diba K, Buzsaki G (2007) Forward and reverse hippocampal place-cell sequences during ripples. Nat Neurosci 10:1241–1242

    Article  PubMed  CAS  Google Scholar 

  • Frey U, Morris R (1997) Synaptic tagging and long-term potentiation. Nature 385:533–536

    Article  PubMed  CAS  Google Scholar 

  • Frey U, Schroeder H, Matthies H (1990) Dopaminergic antagonists prevent long-term maintenance of posttetanic LTP in the ca1 region of rat hippocampal slices. Brain Res 522:69–75

    Article  PubMed  CAS  Google Scholar 

  • Froemke R, Dan Y (2002) Spike-timing dependent plasticity induced by natural spike trains. Nature 416:433–438

    Article  PubMed  CAS  Google Scholar 

  • Froemke RC, Tsay I, Raad M, Long J, Dan Y (2006) Contribution of individual spikes in burst-induced long-term synaptic modification. J Neurophysiol 95:1620–1629

    Article  PubMed  Google Scholar 

  • Fusi S, Drew P, Abbott L (2005) Cascade models of synaptically stored memories. Neuron 45:599–611

    Article  PubMed  CAS  Google Scholar 

  • Gerstner W, Abbott LF (1997) Learning navigational maps through potentiation and modulation of hippocampal place cells. J Comput Neurosci 4:79–94

    Article  PubMed  CAS  Google Scholar 

  • Gerstner W, Kempter R, van Hemmen J, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383(6595):76–78

    Article  PubMed  CAS  Google Scholar 

  • Gerstner W, Kistler WK (2002) Spiking neuron models. Cambridge University Press, Cambridge

    Google Scholar 

  • Gütig R, Aharonov S, Rotter S, Sompolinsky H (2003) Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity. J Neurosci 23(9):3697–3714

    PubMed  Google Scholar 

  • Guyonneau R, VanRullen R, Thorpe S (2005) Neurons tune to the earliest spikes through stdp. Neural Comput 17(4):859–879

    Article  PubMed  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Kentros CG, Agnihotri NT, Streater S, Hawkins RD, Kandel ER (2004) Increased attention to spatial context increases both place field stability and spatial memory. Neuron 42:283–295

    Article  PubMed  CAS  Google Scholar 

  • Kirwan CB, Wixted JT, Squire LR (2008) Activity in the medial temporal lobe predicts memory strength, whereas activity in the prefrontal cortex predicts recollection. J Neurosci 28:10541–10548

    Article  PubMed  CAS  Google Scholar 

  • Legenstein R, Naeger C, Maass W (2005) What can a neuron learn with spike-timing dependent plasticity. Neural Comput 17:2337–2382

    Article  PubMed  Google Scholar 

  • Li S, Cullen WK, Anwyl R, Rowan MJ (2003) Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat Neurosci 6:526–531

    PubMed  CAS  Google Scholar 

  • Lynch G, Dunwiddie T, Gribkoff V (1977) Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature 266:737–739

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postysnaptic AP and EPSP. Science 275:213–215

    Article  PubMed  CAS  Google Scholar 

  • Moncada D, Viola H (2007) Induction of long-term memory by exposure to novelty requires protein synthesis: evidence for a behavioral tagging. J Neurosci 27(28):7476–7481

    Article  PubMed  CAS  Google Scholar 

  • Nadal J-P, Toulouse G, Changeux J-P, Dehaene S (1986) Networks of formal neurons and memory palimpsests. Europhys Lett 1:349–381

    Article  Google Scholar 

  • Navakkode S, Sajikumar S, Frey J (2007) Synergistic requirements for the induction of dopaminergic D1/D5-receptor-mediated LTP in hippocampal slices of rat CA1 in vitro. Neuropharmacology 52:1547–1554

    Article  PubMed  CAS  Google Scholar 

  • Ngezahayo A, Schachner M, Artola A (2000) Synaptic activation modulates the induction of bidirectional synaptic changes in adult mouse hippocamus. J Neurosci 20:2451–2458

    PubMed  CAS  Google Scholar 

  • O’Connor D, Wittenberg G, Wang S-H (2005) Graded bidirectional synaptic plasticity is composed of switch-like unitary events. Proc Natl Acad Sci USA 102:9679–9684

    Article  PubMed  Google Scholar 

  • Oja E (1982) A simplified neuron as a principal component analyzer. J Math Biol 15:267–273

    Article  PubMed  CAS  Google Scholar 

  • Petersen C, Malenka R, Nicoll R, Hopfield J (1998) All-or-none potentiation of ca3-ca1 synapses. Proc Natl Acad Sci USA 95:4732–4737

    Article  PubMed  CAS  Google Scholar 

  • Pfister J-P, Gerstner W (2006) Triplets of spikes in a model of spike timing-dependent plasticity. J Neurosci 26:9673–9682

    Article  PubMed  CAS  Google Scholar 

  • Pfister J-P, Toyoizumi T, Barber D, Gerstner W (2006) Optimal spike-timing dependent plasticity for precise action potential firing in supervised learning. Neural Comput 18:1309–1339

    Article  Google Scholar 

  • Redondo R, Morris R (2011) Making memories last: the synaptic tagging and capture hypothesis. Nat Rev Neurosci 12(1):17–30

    Article  PubMed  CAS  Google Scholar 

  • Reymann K, Frey J (2007) The late maintenance of hippocampal LTP: requirements, phases,synaptic tagging, late associativity and implications. Neuropharmacology 52:24–40

    Article  PubMed  CAS  Google Scholar 

  • Roberts P, Bell C (2000) Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation. Comput Neurosci 9:67–83

    Article  CAS  Google Scholar 

  • Sajikumar S, Frey J (2004) Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol Learn Mem 82:12–25

    Article  PubMed  CAS  Google Scholar 

  • Sajikumar S, Frey J (2004) Resetting of synaptic tags is time- and activity dependent in rat hippocampal ca1 in vitro. Neuroscience 129:503–507

    Article  PubMed  CAS  Google Scholar 

  • Sajikumar S, Navakkode S, Sacktor T, Frey J (2005) Synaptic tagging and cross-tagging: the role of protein kinase Mζ in maintaining long-term potentiation but not long-term depression. J Neurosci 25:5750–5756

    Article  PubMed  CAS  Google Scholar 

  • Schultz W, Dayan P, Montague R (1997) A neural substrate for prediction and reward. Science 275:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Sjöström P, Turrigiano G, Nelson S (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32:1149–1164

    Article  PubMed  Google Scholar 

  • Smith CN, Squire LR (2009) Medial temporal lobe activity during retrieval of semantic memory is related to the age of the memory. J Neurosci 29:930–938

    Article  PubMed  CAS  Google Scholar 

  • Song S, Miller K, Abbott L (2000) Competitive Hebbian learning through spike-time-dependent synaptic plasticity. Nat Neurosci 3:919–926

    Article  PubMed  CAS  Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatr 20:11–21

    Article  PubMed  CAS  Google Scholar 

  • Sutton R, Barto A (1998) Reinforcement learning: an introduction. MIT Press, Cambridge

    Google Scholar 

  • Wang S, Redondo R, Morris R (2010) Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory. Proc Natl Acad Sci USA 107(45):19537–19542

    Article  PubMed  CAS  Google Scholar 

  • Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265:676–679

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the Agence Nationale de la Recherche grant ANR-08-SYSC-005. We thank Tom Schaul for helpful input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Clopath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clopath, C. Synaptic consolidation: an approach to long-term learning. Cogn Neurodyn 6, 251–257 (2012). https://doi.org/10.1007/s11571-011-9177-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-011-9177-6

Keywords

Navigation