Skip to main content
Log in

Negative Tension of Scroll Wave Filaments and Turbulence in Three-Dimensional Excitable Media and Application in Cardiac Dynamics

  • Review Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Scroll waves are vortices that occur in three-dimensional excitable media. Scroll waves have been observed in a variety of systems including cardiac tissue, where they are associated with cardiac arrhythmias. The disorganization of scroll waves into chaotic behavior is thought to be the mechanism of ventricular fibrillation, whose lethality is widely known. One possible mechanism for this process of scroll wave instability is negative filament tension. It was discovered in 1987 in a simple two variables model of an excitable medium. Since that time, negative filament tension of scroll waves and the resulting complex, often turbulent dynamics was studied in many generic models of excitable media as well as in physiologically realistic models of cardiac tissue. In this article, we review the work in this area from the first simulations in FitzHugh–Nagumo type models to recent studies involving detailed ionic models of cardiac tissue. We discuss the relation of negative filament tension and tissue excitability and the effects of discreteness in the tissue on the filament tension. Finally, we consider the application of the negative tension mechanism to computational cardiology, where it may be regarded as a fundamental mechanism that explains differences in the onset of arrhythmias in thin and thick tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aliev, R. R., & Panfilov, A. V. (1996). A simple two-variable model of cardiac excitation. Chaos Solitons Fractals, 7, 293–301.

    Article  Google Scholar 

  • Alonso, S., & Panfilov, A. V. (2007). Negative filament tension in the Luo–Rudy model of cardiac tissue. Chaos, 17, 015102.

    Article  Google Scholar 

  • Alonso, S., & Panfilov, A. V. (2008). Negative filament tension at high excitability in a model of cardiac tissue. Phys. Rev. Lett., 100, 218101.

    Article  Google Scholar 

  • Alonso, S., Sagués, F., & Mikhailov, A. S. (2003). Taming Winfree turbulence of scroll waves in excitable media. Science, 299, 1722–1725.

    Article  Google Scholar 

  • Alonso, S., Kähler, R., Sagués, F., & Mikhailov, A. S. (2004a). Expanding scroll rings and negative tension turbulence in a model of excitable media. Phys. Rev. E, 70, 056201.

    Article  MathSciNet  Google Scholar 

  • Alonso, S., Sancho, J. M., & Sagués, F. (2004b). Suppression of scroll wave turbulence by noise. Phys. Rev. E, 70, 067201(R).

    Google Scholar 

  • Alonso, S., Sagués, F., & Mikhailov, A. S. (2006a). Negative-tension instability of scroll waves and Winfree turbulence in the Oregonator model. J. Phys. Chem. A, 110, 12063–12071.

    Article  Google Scholar 

  • Alonso, S., Sagués, F., & Mikhailov, A. S. (2006b). Periodic forcing of scroll rings and control of Winfree turbulence. Chaos, 16, 023124.

    Article  MathSciNet  Google Scholar 

  • Alonso, S., Kapral, R., & Bär, M. (2009). Effective medium theory for reaction rates and diffusion coefficients of heterogeneous systems. Phys. Rev. Lett., 102, 238302.

    Article  Google Scholar 

  • Alonso, S., Bär, M., & Panfilov, A. V. (2011). Effects of reduced discrete coupling on filament tension in excitable media. Chaos, 21, 013118.

    Article  MathSciNet  Google Scholar 

  • Bánsági, T., & Steinbock, O. (2007). Negative filament tension of scroll rings in an excitable system. Phys. Rev. E, 76, 045202(R).

    Article  Google Scholar 

  • Bär, M., & Brusch, L. (2004). Breakup of spiral waves caused by radial dynamics: Eckhaus and finite wavenumber instabilities. New J. Phys., 6, 5.

    Article  Google Scholar 

  • Bär, M., & Eiswirth, M. (1993). Turbulence due to spiral breakup in a continuous excitable medium. Phys. Rev. E, 48, R1635–R1637.

    Article  Google Scholar 

  • Barkley, D. (1992). Linear stability analysis of rotating spiral waves in excitable media. Phys. Rev. Lett., 68, 2090–2093.

    Article  Google Scholar 

  • Barkley, D., Kness, M., & Tuckerman, L. S. (1990). Spiral-wave dynamics in a simple model of excitable media: the transition from simple to compound rotation. Phys. Rev. A, 42, 2489–2492.

    Article  MathSciNet  Google Scholar 

  • Biktashev, V. N. (1998). A three-dimensional autowave turbulence. Int. J. Bifurc. Chaos Appl. Sci. Eng., 8, 677.

    Article  MathSciNet  Google Scholar 

  • Biktashev, V. N., Holden, A. V., & Zhang, H. (1994). Tension of organizing filaments of scroll waves. Philos. Trans. R. Soc. Lond. Ser. A, 347, 611.

    Article  MathSciNet  MATH  Google Scholar 

  • Biktasheva, I. V., Barkley, D., Biktashev, V. N., & Foulkes, A. J. (2010). Computation of the drift velocity of spiral waves using response functions. Phys. Rev. E, 81, 066202.

    Article  MathSciNet  Google Scholar 

  • Brazhnik, P. K., Davydov, V. A., Zykov, V. S., & Mikhailov, A. S. (1987). Vortex rings in excitable media. Sov. Phys. JETP, 66, 984.

    Google Scholar 

  • Clayton, R. H., Bernus, O., Cherry, E. M., Dierckx, H., Fenton, F. H., Mirabella, L., Panfilov, A. V., Sachse, F. B., Seemann, G., & Zhang, H. (2011). Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog. Biophys. Mol. Biol., 104, 22–48.

    Article  Google Scholar 

  • Davidsen, J., Zhan, M., & Kapral, R. (2008). Filament-induced surface spiral turbulence in three-dimensional excitable media. Phys. Rev. Lett., 101, 208302.

    Article  Google Scholar 

  • Dierckx, H., Bernus, O., & Verschelde, H. (2009). A geometric theory for scroll wave filaments in anisotropic excitable media. Physica D, 238, 941–950.

    Article  MathSciNet  MATH  Google Scholar 

  • Dowle, M., Mantel, R. M., & Barkley, D. (1997). Fast simulations of waves in three-dimensional excitable media. Int. J. Bifurc. Chaos Appl. Sci. Eng., 7, 2529–2546.

    Article  MathSciNet  MATH  Google Scholar 

  • Fenton, F. H., & Karma, A. (1998a). Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos, 8, 20.

    Article  MATH  Google Scholar 

  • Fenton, F., & Karma, A. (1998b). Fiber-rotation-induced vortex turbulence in thick myocardium. Phys. Rev. Lett., 81, 481–484.

    Article  Google Scholar 

  • Fenton, F. H., Cherry, E. M., Hastings, H. M., & Evans, S. J. (2002). Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos, 12, 852.

    Article  Google Scholar 

  • Gray, R. A., & Jalife, J. (1998). Ventricular fibrillation and atrial fibrillation are two different beasts. Chaos, 8, 65.

    Article  MATH  Google Scholar 

  • Gray, R. A., Jalife, J., Panfilov, A. V., Baxter, W. T., Cabo, C., Davidenko, J. M., & Pertsov, A. M. (1995). Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart. Circ. Res., 91, 2454–2469.

    Article  Google Scholar 

  • Henry, H. (2004). Spiral wave drift in an electric field and scroll wave instabilities. Phys. Rev. E, 70, 026204.

    Article  Google Scholar 

  • Henry, H., & Hakim, V. (2000). Linear stability of scroll waves. Phys. Rev. Lett., 85, 5328.

    Article  Google Scholar 

  • Henry, H., & Hakim, V. (2002). Scroll waves in isotropic excitable media: linear instabilities, bifurcations, and restabilized states. Phys. Rev. E, 65, 046235.

    Article  MathSciNet  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117, 500–544.

    Google Scholar 

  • Izhikevich, E. M., & FitzHugh, R. (2006). FitzHugh–Nagumo model. Scholarpedia, 1, 1349.

    Article  Google Scholar 

  • Karma, A. (1990). Meandering transition in two-dimensional excitable media. Phys. Rev. Lett., 65, 2824.

    Article  Google Scholar 

  • Karma, A. (1993). Spiral breakup in model equations of action potential propagation in cardiac tissue. Phys. Rev. Lett., 71, 1103–1106.

    Article  MathSciNet  MATH  Google Scholar 

  • Keener, J. P. (1988). The dynamics of three-dimensional scroll waves in excitable media. Physica D, 31, 269.

    Article  MathSciNet  MATH  Google Scholar 

  • Keener, J. P., & Sneyd, J. (1998). Mathematical physiology. New York: Springer.

    MATH  Google Scholar 

  • Kléber, A., & Rudy, Y. (2004). Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev., 84, 431–488.

    Article  Google Scholar 

  • Luengviriya, C., Storb, U., Lindner, G., Müller, S. C., Bär, M., & Hauser, M. J. B. (2008). Scroll wave instabilities in an excitable chemical medium. Phys. Rev. Lett., 100, 148302.

    Article  Google Scholar 

  • Luo, C. H., & Rudy, Y. (1991). A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ. Res., 68, 1501.

    Article  Google Scholar 

  • Mantel, R. M., & Barkley, D. (1996). Periodic forcing of spiral waves in excitable media. Phys. Rev. E, 54, 4791.

    Article  Google Scholar 

  • Mantel, R. M., & Barkley, D. (2001). Parametric forcing of scroll-wave patterns in three-dimensional excitable media. Physica D, 149, 107.

    Article  MATH  Google Scholar 

  • Meron, E. (1992). Pattern formation in excitable media. Phys. Rep., 218, 1–66.

    Article  MathSciNet  Google Scholar 

  • Mi, J., & Ping, M. (2009). Vortex turbulence due to the interplay of filament tension and rotational anisotropy. Chin. Phys. Lett., 26, 074703.

    Article  Google Scholar 

  • Mikhailov, A. S. (1995). Three-dimensional kinematic. Chaos Solitons Fractals, 5, 673.

    Article  MATH  Google Scholar 

  • Mikhailov, A. S., & Showalter, K. (2006). Control of waves, patterns and turbulence in chemical systems. Phys. Rep., 425, 79–194.

    Article  MathSciNet  Google Scholar 

  • Mikhailov, A. S., Davydov, V. A., & Zykov, V. S. (1994). Complex dynamics of spiral waves and motion of curves. Physica D, 70, 1.

    Article  MathSciNet  MATH  Google Scholar 

  • Moe, G. K., Rheinbolt, W. C., & Abildskov, J. A. (1964). A computer model of atrial fibrillation. Am. Heart J., 67, 200–220.

    Article  Google Scholar 

  • Morgan, S. W., Biktasheva, I. V., & Biktashev, V. N. (2008). Control of scroll-wave turbulence using resonant perturbations. Phys. Rev. E, 78, 046207.

    Article  MathSciNet  Google Scholar 

  • Nielsen, P. M. F., LeGrice, I. J., Smail, B. H., & Hunter, P. J. (1991). A mathematical model of the geometry and fibrous structure of the heart. Am. J. Physiol., 260, H1365–H1378.

    Google Scholar 

  • Noble, D., & Rudy, Y. (2001). Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation. Philos. Trans. R. Soc. Lond. A, 359, 1127–1142.

    Article  Google Scholar 

  • Panfilov, A. V. (1999). Three-dimensional organization of electrical turbulence in the heart. Phys. Rev. E, 59, R6251–R6254.

    Article  Google Scholar 

  • Panfilov, A. V. (2002). Spiral breakup in an array of coupled cells: the role of the intercellular conductance. Phys. Rev. Lett., 88, 118101.

    Article  Google Scholar 

  • Panfilov, A. V. (2006). Is heart size a factor in ventricular fibrillation? Or how close are rabbit and human hearts? Heart Rhythm, 3, 862.

    Article  Google Scholar 

  • Panfilov, A. V., & Hogeweg, P. (1993). Spiral breakup in a modified FitzHugh–Nagumo model. Phys. Lett. A, 176, 295–299.

    Article  Google Scholar 

  • Panfilov, A. V., & Holden, A. V. (1990). Self-generation of turbulent vortices in a two-dimensional model of cardiac tissue. Phys. Lett. A, 151, 23–26.

    Article  Google Scholar 

  • Panfilov, A. V., & Holden, A. V. (1993). Computer simulation of re-entry sources in myocardium in two and three dimensions. J. Theor. Biol., 161, 271–285.

    Article  Google Scholar 

  • Panfilov, A. V., & Keener, J. P. (1995a). Re-entry in an anatomical model of the heart. Chaos Solitons Fractals, 5, 681–689.

    Article  MATH  Google Scholar 

  • Panfilov, A. V., & Keener, J. P. (1995b). Re-entry in three-dimensional Fitzhugh–Nagumo medium with rotational anisotropy. Physica D, 84, 545–552.

    Article  Google Scholar 

  • Panfilov, A. V., & Pertsov, A. M. (1984). Vortex rings in 3-dimensional active medium described by reaction diffusion equations. Dokl. Akad. Nauk SSSR, 274, 1500–1503.

    Google Scholar 

  • Panfilov, A. V., & Pertsov, A. (2001). Ventricular fibrillation: evolution of the multi-wavelet hypothesis. Philos. Trans. R. Soc. Lond. A, 359, 1315–1325.

    Article  Google Scholar 

  • Panfilov, A. V., & Rudenko, A. N. (1987). Two regimes of the scroll ring drift in the three-dimensional active media. Physica D, 28, 215.

    Article  MathSciNet  Google Scholar 

  • Panfilov, A. V., Keldermann, R. H., & Nash, M. P. (2007). Drift and breakup of spiral waves in reaction–diffusion-mechanics systems. Proc. Natl. Acad. Sci. USA, 104, 7922–7926.

    Article  Google Scholar 

  • Pertsov, A. M., & Jalife, J. (2002). Cardiac electrophysiology. From cell to bedside. Philadelphia: Saunders.

    Google Scholar 

  • Qu, Z., Kil, J., Xie, F., Garfinkel, A., & Weisse, J. N. (2000a). Scroll wave dynamics in a three-dimensional cardiac tissue model: roles of restitution, thickness, and fiber rotation. Biophys. J., 78, 2761–2775.

    Article  Google Scholar 

  • Qu, Z., Xie, F., Garfinkel, A., & Weiss, J. N. (2000b). Origins of spiral wave meander and breakup in a two-dimensional cardiac tissue model. Ann. Biomed. Eng., 28, 755–771.

    Article  Google Scholar 

  • Reid, J. C., Chaté, H., & Davidsen, J. (2011). Filament turbulence in oscillatory media. Europhys. Lett., 94, 68003.

    Article  Google Scholar 

  • Shaw, R. M., & Rudy, Y. (1997). Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ. Res., 35, 256.

    Google Scholar 

  • Siegert, F., & Weijer, C. J. (1992). Three-dimensional scroll waves organize dictyostelium slugs. Proc. Natl. Acad. Sci. USA, 89, 6433.

    Article  Google Scholar 

  • ten Tusscher, K. H. W. J., Noble, D., Noble, P. J., & Panfilov, A. V. (2004). A model for human ventricular tissue. Am. J. Physiol., Heart Circ. Physiol., 286, H1573–H1589.

    Article  Google Scholar 

  • ten Tusscher, K. H. W. J., Bernus, O., Hren, R., & Panfilov, A. V. (2006). Comparison of electrophysiological models for human ventricular cells and tissues. Prog. Biophys. Mol. Biol., 90, 326–345.

    Article  Google Scholar 

  • Verschelde, H., Dierckx, H., & Bernus, O. (2007). Covariant stringlike dynamics of scroll wave filaments in anisotropic cardiac tissue. Phys. Rev. Lett., 99, 168104.

    Article  Google Scholar 

  • Weiss, J. N., Chen, P.-S., Qu, Z., Karagueuzian, H. S., & Garfinkel, A. (2000). Ventricular fibrillation: how do we stop the waves from breaking? Circ. Res., 87, 1103–1107.

    Article  Google Scholar 

  • Wiener, N., & Rosenblueth, A. (1946). The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Méx., 16, 205–265.

    MathSciNet  Google Scholar 

  • Winfree, A. T. (1972). Spiral waves of chemical activity. Science, 175, 634–636.

    Article  Google Scholar 

  • Winfree, A. T. (1973). Scroll-shaped waves of chemical activity in three dimensions. Science, 181, 937–939.

    Article  Google Scholar 

  • Winfree, A. T. (1994). Electrical turbulence in three-dimensional heart muscle. Science, 266, 1003.

    Article  Google Scholar 

  • Wu, N. J., Zhang, H., Ying, H. P., Cao, Z., & Hu, G. (2006). Suppression of Winfree turbulence under weak spatiotemporal perturbation. Phys. Rev. E, 73, 060901(R).

    Google Scholar 

  • Zaikin, A. N., & Zhabotinsky, A. M. (1970). Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature, 225, 535–537.

    Article  Google Scholar 

  • Zaitsev, A. (2008). Personal communication.

  • Zaritski, R. M., & Pertsov, A. M. (2005). Stable spiral structures and their interaction in two-dimensional excitable media. Phys. Rev. E, 66, 066120.

    Article  MathSciNet  Google Scholar 

  • Zaritski, R. M., Mironov, S. F., & Pertsov, A. M. (2004). Intermittent self-organization of scroll wave turbulence in three-dimensional excitable media. Phys. Rev. Lett., 92, 168302.

    Article  Google Scholar 

  • Zhang, H., Cao, Z., Wu, N. J., Ying, H. P., & Hu, G. (2005). Suppress Winfree turbulence by local forcing excitable systems. Phys. Rev. E, 94, 188301.

    Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungs-gemeinschaft (DFG) within the framework of SFB 910 (Control of Self-Organizing Nonlinear Systems) is acknowledged. We are grateful to A.S. Mikhailov, F. Sagués, H. Engel, and M.J.B. Hauser for valuable discussions about scroll wave dynamics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, S., Bär, M. & Panfilov, A.V. Negative Tension of Scroll Wave Filaments and Turbulence in Three-Dimensional Excitable Media and Application in Cardiac Dynamics. Bull Math Biol 75, 1351–1376 (2013). https://doi.org/10.1007/s11538-012-9748-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9748-7

Keywords

Navigation