Skip to main content
Log in

Neuregulin-1 enhances differentiation of cardiomyocytes from embryonic stem cells

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Neuregulin-1 (NRG-1) is a multifunctional regulator that acts through receptor tyrosine kinases of the epidermal growth factor (EGF/ErbB) receptor family in diverse tissue. ErbB receptors are expressed in developing embryoid bodies (EBs), and the importance of the NRG-1/ErbB signaling axis in heart development has been investigated, but the underlying molecular mechanism is poorly studied. NRG-1 treatment at 100 ng/ml significantly increased the number of beating EBs of differentiated murine embryonic stem cells (ESCs). Furthermore, NRG-1 up-regulated the expression of the cardiac-restricted transcription factors Nkx2.5 and GATA-4 and factors involved in differentiated cardiac cells (α-MHC, β-MHC and α-actinin); NRG-1-induced increase of Nkx2.5 transcription was inhibited by treatment with the PI3 K inhibitor or ErbB receptor inhibitor. Western blot analysis confirmed that the expression of phospho-Akt in the beating foci was increased in the presence of NRG-1. Our results suggest that NRG-1 promotes cardiomyocyte differentiation of ESCs and the ErbB/PI3 K/Akt signaling pathway is one of the underlying molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ai Z, Misra S, Susa M et al (1995) Phosphatidylinositol 3-kinase activity in murine erythroleukemia cells during DMSO-induced differentiation. Exp Cell Res 219:454–460. doi:10.1006/excr.1995.1252

    Article  Google Scholar 

  2. Boheler KR, Czyz J, Tweedie D et al (2002) Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 91:189–201. doi:10.1161/01.RES.0000027865.61704.32

    Article  Google Scholar 

  3. Brewer AC, Alexandrovich A, Mjaatvedt CH et al (2005) GATA factors lie upstream of Nkx 2.5 in the transcriptional regulatory cascade that effects cardiogenesis. Stem Cells Dev 14:425–439. doi:10.1089/scd.2005.14.425

    Article  Google Scholar 

  4. Chen J, Halappanavar SS, St-Germain JR et al (2004) Role of Akt/protein kinase B in the activity of transcriptional coactivator p300. Cell Mol Life Sci 61:1675–1683. doi:10.1007/s00018-004-4103-9

    Article  Google Scholar 

  5. Chen Y, Amende I, Hampton TG et al (2006) Vascular endothelial growth factor promotes cardiomyocyte differentiation of embryonic stem cells. Am J Physiol Heart Circ Physiol 291:H1653–H1658. doi:10.1152/ajpheart.00363.2005

    Article  Google Scholar 

  6. Dai YS, Markham BE (2001) p300 function as a coactivator of transcription factor GATA-4. J Biol Chem 276:37178–37185. doi:10.1074/jbc.M103731200

    Article  Google Scholar 

  7. Dai YS, Cserjesi P, Markham BE et al (2002) The transcription factors GATA-4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism. J Biol Chem 277:24390–24398. doi:10.1074/jbc.M202490200

    Article  Google Scholar 

  8. Dong Z, Brennan A, Liu N et al (1995) Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors. Neuron 15:585–596. doi:10.1016/0896-6273(95)90147-7

    Article  Google Scholar 

  9. Falls DL (2003) Neuregulin: function, forms, and signaling strategies. Exp Cell Res 284:14–30. doi:10.1016/S0014-4827(02)00102-7

    Article  Google Scholar 

  10. Garratt AN (2006) “To erb-B or not to erb-B…” Neuregulin-1/ErbB signaling in heart development and function. J Mol Cell Cardiol 41:215–218. doi:10.1016/j.yjmcc.2006.05.020

    Article  Google Scholar 

  11. Garratt AN, Ozcelik C, Birchmeier C (2003) ErbB2 pathways in heart and neural diseases. Trends Cardiovasc Med 13:80–86. doi:10.1016/S1050-1738(02)00231-1

    Article  Google Scholar 

  12. Guo S, Cichy SB, He X et al (2001) Insulin suppresses transactivation by CAAT/enhancer-binding proteins beta (C/EBPbeta): signaling to p300/CREB-binding protein by protein kinase B disrupts interaction with the major activation domain of C/EBPbeta. J Biol Chem 276:8516–8523. doi:10.1074/jbc.M008542200

    Article  Google Scholar 

  13. Huang WC, Chen CC (2005) Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. Mol Cell Biol 25:6592–6602. doi:10.1128/MCB.25.15.6592-6602.2005

    Article  Google Scholar 

  14. Katso R, Okkenhaug K, Ahmadi K et al (2001) Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 17:615–675. doi:10.1146/annurev.cellbio.17.1.615

    Article  Google Scholar 

  15. Kawamura T, Ono K, Morimoto T et al (2005) Acetylation of GATA-4 is involved in the differentiation of embryonic stem cells into cardiac myocytes. J Biol Chem 280:19682–19688. doi:10.1074/jbc.M412428200

    Article  Google Scholar 

  16. Kessler PD, Byrne BJ (1999) Myoblast cell grafting into heart muscle: cellular biology and potential application. Annu Rev Physiol 61:219–242. doi:10.1146/annurev.physiol.61.1.219

    Article  Google Scholar 

  17. Kim HS, Cho JW, Hidaka K et al (2007) Activation of MEK-ERK by heregulin-beta1 promotes the development of cardiomyocytes derived from ES cells. Biochem Biophys Res Commun 361:732–738. doi:10.1016/j.bbrc.2007.07.045

    Article  Google Scholar 

  18. Klinz F, Bloch W, Addicks K et al (1999) Inhibition of phosphatidylinositol-3-kinase blocks development of functional embryonic cardiomyocytes. Exp Cell Res 247:79–83. doi:10.1006/excr.1998.4309

    Article  Google Scholar 

  19. Kolossov E, Lu Z, Drobinskaya I et al (2005) Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. FASEB J 19:577–579

    Google Scholar 

  20. Kumar D, Sun B (2005) Transforming growth factor-beta2 enhances differentiation of cardiac myocytes from embryonic stem cells. Biochem Biophys Res Commun 332:135–141. doi:10.1016/j.bbrc.2005.04.098

    Article  Google Scholar 

  21. Lemke G (1996) Neuregulins in development. Mol Cell Neurosci 7:247–262. doi:10.1006/mcne.1996.0019

    Article  Google Scholar 

  22. Lien CL, Wu C, Mercer B et al (1999) Control of early cardiac-specific transcription of Nkx2–5 by a GATA-dependent enhancer. Development 126:75–84

    Google Scholar 

  23. Lints TJ, Parsons LM, Hartley L et al (1993) Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119:969

    Google Scholar 

  24. Lupu R, Cardillo M, Harris L et al (1995) Interaction between erbB-receptors and heregulin in breast cancer tumor progression and drug resistance. Semin Cancer Biol 6:135–145. doi:10.1006/scbi.1995.0016

    Article  Google Scholar 

  25. Metzger JM, Lin WI, Samuelson LC (1994) Transition in cardiac contractile sensitivity to calcium during the in vitro differentiation of mouse embryonic stem cells. J Cell Biol 126:701–711. doi:10.1083/jcb.126.3.701

    Article  Google Scholar 

  26. Morisco C, Seta K, Hardt SE et al (2001) Glycogen synthase kinase 3beta regulates GATA4 in cardiac myocytes. J Biol Chem 276:28586–28597. doi:10.1074/jbc.M103166200

    Article  Google Scholar 

  27. Muller M, Fleischmann BK, Selbert S et al (2000) Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J 14:2540–2548. doi:10.1096/fj.00-0002com

    Article  Google Scholar 

  28. Naito AT, Tominaga A, Oyamada M et al (2003) Early stage-specific inhibitions of cardiomyocyte differentiation and expression of Csx/Nkx2.5 and GATA-4 by phosphatidylinositol 3-kinase inhibitor LY294002. Exp Cell Res 291:56–69. doi:10.1016/S0014-4827(03)00378-1

    Article  Google Scholar 

  29. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705. doi:10.1038/35070587

    Article  Google Scholar 

  30. Reineche H, Zhang M, Bartosek T et al (1999) Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100:193–202

    Google Scholar 

  31. Roggia C, Ukena C, Böhm M et al (2007) Hepatocyte growth factor (HGF) enhances cardiac commitment of differentiating embryonic stem cells by activating PI3 kinase. Exp Cell Res 313:921–930. doi:10.1016/j.yexcr.2006.12.009

    Article  Google Scholar 

  32. Sauer H, Rahimi G, Hescheler J et al (2000) Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett 476:218–223. doi:10.1016/S0014-5793(00)01747-6

    Article  Google Scholar 

  33. Shah NM, Marchionni MA, Isaacs I et al (1994) Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77:349–360. doi:10.1016/0092-8674(94)90150-3

    Article  Google Scholar 

  34. Soonpaa MH, Koh GY, Klug MG et al (1994) Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264:98–101. doi:10.1126/science.8140423

    Article  Google Scholar 

  35. Spagnoli FM, Hemmati BA (2006) Guiding embryonic stem cells towards differentiation: lessons from molecular embryology. Curr Opin Genet Dev 16:469–475. doi:10.1016/j.gde.2006.08.004

    Article  Google Scholar 

  36. Suk KH, Hidaka K, Morisaki T (2003) Expression of ErbB receptors in ES cell-derived cardiomyocytes. Biochem Biophys Res Commun 309:241–246. doi:10.1016/S0006-291X(03)01521-3

    Article  Google Scholar 

  37. Tamir Y, Bengal E (2000) Phosphoinositide 3-kinase induces the transcriptional activity of MEF2 proteins during muscle differentiation. J Biol Chem 275:34424–34432. doi:10.1074/jbc.M005815200

    Article  Google Scholar 

  38. van der Geer P, Hunter T, Lindberg RA (1994) Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 10:251–337. doi:10.1146/annurev.cb.10.110194.001343

    Article  Google Scholar 

  39. Ventura C, Branzi A (2006) Autocrine and intracrine signaling for cardiogenesis in embryonic stem cells: a clue for the development of novel differentiating agents. Handb Exp Pharmacol 174:123–146

    Article  Google Scholar 

  40. Wei H, Juhasz O, Li J et al (2005) Embryonic stem cells and cardiomyocyte differentiation: phenotypic and molecular analyses. J Cell Mol Med 9:804–817. doi:10.1111/j.1582-4934.2005.tb00381.x

    Article  Google Scholar 

  41. Xia X, Serrero G (1999) Inhibition of adipose differentiation by phosphatidylinositol 3-kinase inhibitors. J Cell Physiol 178:9–16. doi :10.1002/(SICI)1097-4652(199901)178:1<9::AID-JCP2>3.0.CO;2-#

    Article  Google Scholar 

  42. Yanazume T, Hasegawa K, Morimoto T et al (2003) Cardiac p300 is involved in myocyte growth with decompensated heart failure. Mol Cell Biol 23:3593–3606. doi:10.1128/MCB.23.10.3593-3606.2003

    Article  Google Scholar 

  43. Yanazume T, Morimoto T, Wada H et al (2003) Biological role of p300 in cardiac myocytes. Mol Cell Biochem 248:115–119. doi:10.1023/A:1024132217870

    Article  Google Scholar 

Download references

Acknowledgments

We thank Chunchun Zhuge, Jianfeng Shen, Hua Jiang, Chunliang Li, Yijun Shi and Lingjie Li for their valuable help in experiments. This work was supported by the Shanghai Science and Technology Committee Grant (No. 030121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuyan Dai.

Additional information

Qiuyan Dai and Baogui Sun are co-corresponding authors contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Xu, G., Wu, Y. et al. Neuregulin-1 enhances differentiation of cardiomyocytes from embryonic stem cells. Med Biol Eng Comput 47, 41–48 (2009). https://doi.org/10.1007/s11517-008-0383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0383-2

Keywords

Navigation