Skip to main content
Log in

Effect of Variations in the Fatty Acid Chain of Oligofructose Fatty Acid Esters on Their Foaming Functionality

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

In this article the effect of variations in the fatty acid chain of oligofructose fatty acid esters (OFAE) on foamability and foam stability is described. First, oligofructose (OF) mono-esters containing saturated fatty acid chains ranging between C4 and C18 were studied. Additionally, a mono-ester containing a C16 mono-unsaturated fatty acid chain and a C12 di-ester were studied. Finally, to investigate the influence of the size of the hydrophilic group, commercially available sucrose esters were studied. The surface tension and surface rheological properties of air/water interfaces stabilized by the esters were determined, as well as the foaming properties of the esters, at a bulk concentration of 0.2 % (w/v). OF mono-esters with intermediate fatty acid chain lengths (C10-C16) were able to migrate quickly to the interface producing foams with small bubbles (0.4 mm), a relatively narrow bubble size distribution, and a high stability. For oligofructose mono-esters containing fatty acids C4 and C8, the bulk concentration of 0.2 % (w/v) was below the CMC, resulting in insufficient surface coverage, and low foamability and foam stability. The OF C18 mono-ester and the OF C12 di-ester were slow to migrate to the interface resulting in low foamability. Despite similar surface tension values, the foam half-life time of OFAE was higher than of the corresponding sucrose esters. OFAE gave higher surface dilatational moduli compared to sucrose esters. Based on the frequency dependence of the modulus and analysis of Lissajous plots, we propose that OFAE may be forming a soft glass at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.S. Murray, R. Ettelaie, Curr. Opin. Colloid Interface Sci. 9, 314–320 (2004)

    Article  CAS  Google Scholar 

  2. D. Langevin, ChemPhysChem 9, 510–522 (2008)

    Article  CAS  Google Scholar 

  3. P.J. Wilde, Curr. Opin. Colloid Interface Sci. 5, 176–181 (2000)

    Article  CAS  Google Scholar 

  4. S. Hilgenfeldt, S.A. Koehler, H.A. Stone, Phys. Rev. Lett. 86, 4704 (2001)

    Article  CAS  Google Scholar 

  5. S.A. Koehler, S. Hilgenfeldt, H.A. Stone, Langmuir 16, 6327–6341 (2000)

    Article  CAS  Google Scholar 

  6. J.B. Bezelgues, S. Serieye, L. Crosset-Perrotin, M.E. Leser, Colloids Surf. A 331, 56–62 (2008)

    Article  CAS  Google Scholar 

  7. M.A. Bos, T. Van Vliet, Adv. Colloid Interf. Sci. 91, 437–471 (2001)

    Article  CAS  Google Scholar 

  8. L.K. Shrestha, Y. Matsumoto, K. Ihara, K. Aramaki, J. Oleo Sci. 57, 485–494 (2008)

    Article  CAS  Google Scholar 

  9. P.A. Wierenga, H. Gruppen, Curr. Opin. Colloid Interface Sci. 15, 365–373 (2010)

    Article  CAS  Google Scholar 

  10. P.A. Wierenga, L. van Norél, E.S. Basheva, Colloids Surf. A 344, 72–78 (2009)

    Article  CAS  Google Scholar 

  11. S.E.H.J. Van Kempen, C.G. Boeriu, H.A. Schols, P. De Waard, E. Van der Linden, L.M.C. Sagis, Food Chem. 138, 1884–1891 (2013)

    Article  Google Scholar 

  12. S.E.H.J. Van Kempen, K. Maas, H.A. Schols, E. Van der Linden, L.M.C. Sagis, Food Hydrocoll. 32, 162–171 (2013)

    Article  Google Scholar 

  13. S.D.P. Eugénie, D. Fabrice, C. Gérard, M. Samir, Food Hydrocoll. (2012). doi:10.1016/j.foodhyd.2012.12.001

    Google Scholar 

  14. A. Ducret, A. Giroux, M. Trani, R. Lortie, J. Am, Oil Chem. Soc. 73, 109–113 (1996)

    Article  CAS  Google Scholar 

  15. T. Zhang, R.E. Marchant, J. Colloid Interface Sci. 177, 419–426 (1996)

    Article  CAS  Google Scholar 

  16. G. Garofalakis, B.S. Murray, D.B. Sarney, J. Colloid Interface Sci. 229, 391–398 (2000)

    Article  CAS  Google Scholar 

  17. C.J. Drummond, D. Wells, Colloids Surf. A 141(131–142) (1998)

  18. B.V. Zhmud, F. Tiberg, J. Kizling, Langmuir 16, 2557–2565 (2000)

    Article  CAS  Google Scholar 

  19. J. Lucassen, M. Van Den Tempel, Chem. Eng. Sci. 27, 1283–1291 (1972)

    Article  CAS  Google Scholar 

  20. P. Cicuta, E.J. Stancik, G.G. Fuller, Phys. Rev. Lett. 90, 236101/1–236101/4 (2003)

    Article  CAS  Google Scholar 

  21. W. Drenckhan, D. Langevin, Curr. Opin. Colloid Interface Sci. 15, 341–358 (2010)

    Article  CAS  Google Scholar 

  22. G. Garofalakis, B.S. Murray, Colloids Surf. B 21(3–17) (2001)

  23. S. Soultani, S. Ognier, J.M. Engasser, M. Ghoul, Colloids Surf. A 227(35–44) (2003)

  24. A. Mackie, P. Wilde, Adv. Colloid Interf. Sci. 117, 3–13 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research forms part of the research program of the Dutch Polymer Institute DPI, project #687. The authors want to thank Carmen Boeriu for her contribution to the synthesis of the oligofructose fatty acid esters and Ricarda Enke for her contribution to the functional experiments. Finally, we thank Acatris for supplying the RYOTO sucrose esters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard M. C. Sagis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Kempen, S.E.H.J., Schols, H.A., van der Linden, E. et al. Effect of Variations in the Fatty Acid Chain of Oligofructose Fatty Acid Esters on Their Foaming Functionality. Food Biophysics 9, 114–124 (2014). https://doi.org/10.1007/s11483-013-9324-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-013-9324-1

Keywords

Navigation