Skip to main content
Log in

Inverted polymer solar cells with TiO2 electron extraction layers prepared by magnetron sputtering

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

TiO2 thin films deposited by magnetron sputtering possess excellent optical transmittance, high refractive index, good adhesion and chemical stability. In this manuscript, TiO2 thin films deposited by magnetron sputtering was used for the first time as an electron extraction layer in inverted polymer solar cells (IPSCs), and the effect of the TiO2 thickness on the photovoltaic performance of P3HT:PC61BM IPSCs was investigated. The highest PCE value of 3.75% was obtained when the thickness of TiO2 thin films was in the range between 42 nm and 73 nm. The absorption properties, morphology and structure of the TiO2 films were characterized by UV-Vis spectroscopy, SEM and Raman spectroscopy, and were related to the device performance of P3HT:PC61BM IPSCs. The results indicate that TiO2 films deposited by magnetron sputtering are an excellent electron extraction layer for IPSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Güne S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev, 2007, 107: 1324–1338

    Article  Google Scholar 

  2. Chen JW, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res, 2009, 42: 1709–1718

    Article  CAS  Google Scholar 

  3. Tang CW. Two-layer organic photovoltaic cell. Appl Phys Lett, 1986, 48: 183–185

    Article  CAS  Google Scholar 

  4. He ZC, Zhong CM, Su SJ, Xu M, Wu HB, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics, 2012, 6: 591–595

    Google Scholar 

  5. Jørgensen M, Norrman K, Krebs FC. Stability/degradation of polymer solar cells. Sol Energy Mater Sol Cells, 2008, 92: 686–714

    Article  Google Scholar 

  6. Yang D, Zhou LY, Chen LC, Zhao B, Zhang J, Li C. Chemically modified graphene oxides as a hole transport layer in organic solar cells. Chem Commun, 2012, 48: 8078–8080

    Article  CAS  Google Scholar 

  7. Zhang FJ, Xu XW, Tang WH, Zhang J, Zhuo ZL, Wang J, Wang J, Xu Z, Wang YS. Recent development of the inverted configuration organic solar cells. Sol Energy Mater Sol Cells, 2011, 95: 1785–1799

    Article  CAS  Google Scholar 

  8. Zhao DW, Liu P, Sun XW, Tan ST, Ke L, Kyaw AKK. An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO3 hole-transporting layer. Appl Phys Lett, 2009, 95: 153304–153306

    Article  Google Scholar 

  9. Zhang FJ, Zhao DW, Zhuo ZL, Wang H, Xu Z, Wang YS. Inverted small molecule organic solar cells with Ca modified ITO as cathode and MoO3 modified. Sol Energy Mater Sol Cells, 2010, 94: 2416–2421

    Article  CAS  Google Scholar 

  10. Zhao DW, Ke L, Li Y, Tan ST, Kyaw AKK, Demir HV, Sun XW, Carroll DL, Lo GQ, Kwong DL. Optimization of inverted tandem organic solar cells. Sol Energy Mater Sol Cells, 2011, 95: 921–926

    Article  CAS  Google Scholar 

  11. Weickert J, Sun HY, Palumbiny C, Hesse HC, Schmidt-Mende L. Spray-deposited PEDOT:PSS for inverted organic solar cells. Sol Energy Mater Sol Cells, 2010, 94: 2371–2374

    Article  CAS  Google Scholar 

  12. Sun Y, Seo JH, Takacs CJ, Seifter J, Heeger AJ. Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv Mater, 2011, 23: 1679–1683

    Article  CAS  Google Scholar 

  13. Hau SK, Yip HL, Acton O, Baek NS, Ma H, Jen AKY. Interfacial modification to improve inverted polymer solar cells. J Mater Chem, 2008, 18: 5113–5119

    Article  CAS  Google Scholar 

  14. Baek W-H, Choi M, Yoon TS, Lee HH, Kim YS. Use of fluorine-doped tin oxide instead of indium oxide in highly efficient air-fabricated inverted polymer solar cells. Appl Phys Lett, 2010, 96: 133506–133508

    Article  Google Scholar 

  15. Lira-Cantu M, Chafiq A, Faissat J, Gonzalez-Valls I, Yu YH. Oxide/ polymer interfaces for hybrid and organic solar cells: Anatase vs. Rutile TiO2. Sol Energy Mater Sol Cells, 2011, 95: 1362–1374

    Article  CAS  Google Scholar 

  16. Waldauf C, Morana M, Denk P, Schilinsky P, Coakley K, Brabec CJ. Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact. Appl Phys Lett, 2006, 89: 233517

    Article  Google Scholar 

  17. Tan ZA, Zhang WQ, Zhang ZG, Qian DP, Huang Y, Hou J, Li YF. High-performance inverted polymer solar cells with solution-processed titanium chelate as electron-collecting layer on ITO electrode. Adv Mater, 2012, 24: 1476–1481

    Article  CAS  Google Scholar 

  18. Yang TB, Qin DH, Lan LF, Huang WB, Gong X, Cao Y. Inverted polymer solar cells with a solution-processed zinc oxide thin film as an electron collection layer. Sci China Chem, 2012, 55: 755–759

    Article  CAS  Google Scholar 

  19. Zhang WB, Tu YF, Sun HJ, Yue K, Gong X, Cheng Stepen ZD. Polymer solar cells with an inverted device configuration using polyhedral oligomeric silsesquioxane-[60]fullerene dyad as a novel electron acceptor. Sci China Chem, 2012, 55: 749–754

    Article  CAS  Google Scholar 

  20. Wang FZ, Qi X, Tan ZA, Qian DP, Ding YQ, Li LJ, Li SS, Li YF. Alcohol soluble titanium(IV) oxide bis(2,4-pentanedionate) as electron collection layer for efficient inverted polymer solar cells. Sol Energy Mater Sol Cells, 2012, 13: 2429–2435

    CAS  Google Scholar 

  21. Zhang WQ, Tan ZA, Qian DP, Li LJ, Xu Q, Li SS, Zheng H, Li YF. ITO electrode/photoactive layer interface engineering for efficient inverted polymer solar cells based on P3HT and PCBM using a solution-processed titanium chelate. Adv Mater, 2012, 45: 285102

    Google Scholar 

  22. Tan ZA, Qian DP, Zhang WQ, Li LJ, Ding YQ, Xu Q, Wang FZ, Li YF. Efficient and stable polymer solar cells with solution-processed molybdenum oxide interfacial layer. J Mater Chem A, 2013, 1: 657–664

    Article  CAS  Google Scholar 

  23. Tan ZA, Li LJ, Cui CH, Ding YQ, Xu Q, Li SS, Qian DP, Li YF. Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells. J Phys Chem C, 2012, 116: 18626–18632

    Article  CAS  Google Scholar 

  24. Akinobu H, Osamu Y, Takuya F, Kaku U, Susumu Y. High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer. Appl Phys Lett. 2007, 90: 163517

    Article  Google Scholar 

  25. Kim JY, Kim SH, Lee HH, Lee K, Ma W, Gong X, Heeger AJ. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv Mater, 2006, 18: 572–576

    Article  CAS  Google Scholar 

  26. Li XH, Choy WH, Hou LJ, Xie FX, Sha WI, Ding BF, Guo X, Li YF, Hou JH, Yang Y. Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv Mater, 2012, 24: 3046–3052

    Article  CAS  Google Scholar 

  27. Sun HY, Weickert J, Hesse HC, Schmmidt-Mende L. UV light protection through TiO2 blocking layers for inverted organic solar cells. Sol Energy Mater Sol Cells, 2011, 95: 3450–3454

    Article  CAS  Google Scholar 

  28. Takeda S, Suzuki S, Odaka H. Hosono H. Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering. Thin Solid Films, 2001, 392: 338–344

    Article  CAS  Google Scholar 

  29. Dobbertin T, Kroeger M, Heithecker D, Schneider D, Metzdorf D, Neuner H, Becker E, Johannes H-H, Kowalsky W. Inverted top-emitting organic light-emitting diodes using sputter-deposited anodes. Appl Phys Lett, 2003, 82: 284–286

    Article  CAS  Google Scholar 

  30. Chung CH, Ko YW, Kim YH, Sohn CY, Chu HY, Park SHK, Lee JH. Radio frequency magnetron sputter-deposited indium tin oxide for use as a cathode in transparent organic light-emitting diode. Thin Solid Films, 2005, 491: 294–297

    Article  CAS  Google Scholar 

  31. Wong FL, Fung MK, Tong SW, Lee CS, Lee ST. Flexible organic light-emitting device based on magnetron sputtered indium-tin-oxide on plastic substrate. Thin Solid Films, 2004, 466: 225–230

    Article  CAS  Google Scholar 

  32. Nam EY, Kang YH, Jung D, Kim YS. Anode material properties of Ga-doped ZnO thin films by Pulsed DC magnetron sputtering method for organic light emitting diodes. Thin Solid Films, 2010, 518: 6245–6248

    Article  CAS  Google Scholar 

  33. Seki S, Unagami T, Tsujiyama B. p-Channel TFT’s using magnetron-sputtered Ta2O5 films as gate insulators. Electron Device Letters, 1984, 5: 197–198

    Article  Google Scholar 

  34. Yabuta H, Sano M, Abe K, Den T, Kumomi H, Nomura K, Kamiya T, Hosono H. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering. Appl Phys Lett, 2006, 89: 112123–112125

    Article  Google Scholar 

  35. Kwak DJ, Moon BH, Lee DK, Park CS, Sung YM. Comparison of transparent conductive indium tin oxide, titanium oxide, and fluorine-doped tin oxide films for dye-sensitized solar cell application. J Electrical Engineering & Technology. 2011, 6: 684–687

    Article  Google Scholar 

  36. Qiao J, Shi K, Wang Q-M. A giant silver alkynyl cage with sixty silver( I) ions clustered around polyoxometalate templates. Angew Chem Int Ed, 2008, 49: 1766–1769

    Google Scholar 

  37. Zhou YH, Fuentes-Hernandez C, Shim J, Meyer J, Giordano AJ, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Brédas JL, Marder SR, Kahn A, Kippelen B. A universal method to produce low-work function electrodes for organic electronics. Science, 2012, 336: 327–332

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhao or Jian Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Z., Yang, D., Wang, N. et al. Inverted polymer solar cells with TiO2 electron extraction layers prepared by magnetron sputtering. Sci. China Chem. 56, 1573–1577 (2013). https://doi.org/10.1007/s11426-013-4901-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4901-1

Keywords

Navigation