Skip to main content
Log in

Applications of functionalized ionic liquids

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Recent developments of the synthesis and applications of functionalized ionic liquids (including dual-functionalized ionic liquids) have been highlighted in this review. Ionic liquids are attracting attention as alternative solvents in green chemistry, but as more functionalized ILs are prepared, a greater number of applications in increasingly diverse fields are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark J H. Green chemistry: Challenges and opportunities. Green Chem, 1999, (1): 1–8

  2. Liu H, Tao G-H, Evans D G, Kou Y. Solubility of C60 in ionic liquids. Carbon, 2005, 43(8): 1782–1785

    Article  CAS  Google Scholar 

  3. Chum H L, Koch V R, Miller L L, Osteryoung R A. Electrochemical scrutiny of organometallic iron complexes and hexame-thylbenzene in a room temperature molten salt. J Am Chem Soc, 1975, 97(11): 3264–3265

    Article  CAS  Google Scholar 

  4. Robinson J, Bugle R C, Chum H L, Koran D, Osteryoung R A. Proton and carbon-13 nuclear magnetic resonance spectroscopy studies of aluminium halide-alkylpyridinium halide molten salts and their benzene solutions. J Am Chem Soc, 1979, 101(14): 3776–3779

    Article  CAS  Google Scholar 

  5. Laher T M, Hussey C L. Electrochemical studies of chloro complex formation in low-temperature chloroaluminate melts. 1. Iron(II), iron(III), and nickel(II). Inorg Chem, 1982, 21(11): 4079–4083

    Article  CAS  Google Scholar 

  6. Scheffler T B, Hussey C L, Seddon K R, Kear C M, Armitage P D. Molybdenum chloro complexes in room-temperature chloroaluminate ionic liquids: Stabilization of hexachloromolybdate(2-) and hexachloromolybdate(3-). Inorg Chem, 1983, 22(15): 2099–2100

    Article  CAS  Google Scholar 

  7. Appleby D, Hussey C L, Seddon K R, Turp J E. Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes. Nature, 1986, 323: 614–616

    Article  CAS  Google Scholar 

  8. Boon J A, Levisky J A, Pflug J L, Wilkes J S. Friedel-Crafts reactions in ambient-temperature molten salts. J Org Chem, 1986, 51(4): 480–483

    Article  CAS  Google Scholar 

  9. Chauvin Y, Gilbert B, Guibard I. Catalytic dimerization of alkenes by nickel complexes in organochloroaluminate molten salts. J Chem Soc Chem Commun, 1990, (23): 1715–1716

  10. Carlin R T, Wilkes J S. Complexation of metallocene dichloride (Cp2MCl2) in a chloroaluminate molten salt: Relevance to homogeneous Ziegler-Natta catalysis. J Mol Catal, 1990, 63(2): 125–129

    Article  CAS  Google Scholar 

  11. Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun, 1992, 13: 965–967

    Article  Google Scholar 

  12. Zhao D, Wu M, Kou Y, Min E. Ionic liquids: Applications in catalysis. Catal Today, 2002, 74(1–2): 157–189

    Article  CAS  Google Scholar 

  13. Freemental M. Ionic liquids make slash in industry. Chem Eng News, 2003, August 1: 33–38

    Google Scholar 

  14. Wasserscheid P, Welton T, eds. Ionic Liquid in Synthesis. Berlin: Wiley-VCH, 2002

    Google Scholar 

  15. Peris E, Crabtree R H. Recent homogeneous catalytic applications of chelate and pincer N-heterocyclic carbenes. Coord Chem Rev, 2004, 248(21–24): 2239–2246

    Article  CAS  Google Scholar 

  16. Crudden C M, Allen D P. Stability and reactivity of N-heterocyclic carbene complexes. Coord Chem Rev, 2004, 248(21–24): 2247–2273

    Article  CAS  Google Scholar 

  17. Antonietti E, Kuang D, Smarsly B, Zhou Y. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed, 2004, 43(38): 4988–4992

    Article  CAS  Google Scholar 

  18. Tao G-H, Zou M, Wang X-H, Chen Z-Y, Evans D G, Kou Y. Comparison of polarities of room-temperature ionic liquids using FT-IR spectroscopic probes. Austr J Chem, 2005, 58(5): 327–331

    Article  CAS  Google Scholar 

  19. Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M. Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules, 2004, 5(2): 266–268

    Article  CAS  Google Scholar 

  20. Yang Y-L, Kou Y. Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe. Chem Commun, 2004, (2): 226–227

  21. Wilkes J S. A short history of ionic liquids-from molten salts to neoteric solvents. Green Chem, 2002, 4(2): 73–80

    Article  CAS  Google Scholar 

  22. Dyson P J, Grossel M C, Srinivasan N, Vine T, Welton T, Williams D J, White A J P, Zigras T. Organometallic synthesis in ambient temperature chloroaluminate(III) ionic liquids. Ligand exchange reactions of ferrocene. J Chem Soc Dalton Trans: Inorg Chem, 1997, 3465–3469

  23. Crofts D, Dyson P J, Sanderson K M, Srinivasan N, Welton T. Chloroaluminate(III) ionic liquid mediated synthesis of transition metal-cyclophane complexes: Their role as solvent and Lewis acic catalyst. J Organomet Chem, 1999, 573: 292–298

    Article  CAS  Google Scholar 

  24. Cole A C, Jensen J L, Ntai I, Tran K L T, Weaver K J, Forbes D C, Davis J H Jr. Novel bronsted acidic ionic liquids and their use as dual solvent-catalysts. J Am Chem Soc, 2002, 124(21): 5962–5963

    Article  CAS  Google Scholar 

  25. Li D, Shi F, Peng J, Guo S, Deng Y. Application of functional ionic liquids possessing two adjacent acid sites for acetalization of aldehydes. J Org Chem, 2004, 69(10): 3582–3585

    Article  CAS  Google Scholar 

  26. Fei Z, Zhao D, Geldbach T J, Scopelliti R, Dyson P J. Bronsted acidic ionic liquids and their zwitterions: Synthesis, characterization and pKa determination. Chem Eur J, 2004, 10: 4886–4893

    Article  CAS  Google Scholar 

  27. Wu H-H, Sun J, Yang F, Tang J, He M-Y. Immobilization of HX. [Hmim]X as halogenating agent, recyclable catalyst, and medium for conversion of alcohols to alkyl halides. Chin J Chem, 2004, 22(7): 619–621

    Article  CAS  Google Scholar 

  28. Ramnial T, Ino D D, Clyburne J A C. Phosphonium ionic liquids as reaction media for strong bases. Chem Commun, 2005, (3): 325–327

  29. Handy S T. Greener solvents: Room temperature ionic liquids from biorenewable sources. Chem Eur J, 2003, 9(13): 2938–2944

    Article  CAS  Google Scholar 

  30. Yang Y-L, Wang X-H, Kou Y, Min E-Z. Growing familiy of ionic liquids. Prog Chem(in Chinese), 2003, 15(6): 471–476

    CAS  Google Scholar 

  31. Liu H, Tao G-H, Shao Y-H, Kou Y. Applications of functionalized ionic liquids in electrochemistry. Chemistry Online(in Chinese), 2004, 67(11): 795–801

    CAS  Google Scholar 

  32. Dyson P J. Catalysis by low oxidation state transition metal (carbonyl) clusters. Coord Chem Rev, 2004, 248: 2443–2458

    Article  CAS  Google Scholar 

  33. Dyson P J. Synthesis of organometallics and catalytic hydrogenations in ionic liquids. Appl Organomet Chem, 2002, 16: 495–500

    Article  CAS  Google Scholar 

  34. Dyson P J. Transition metal chemistry in ionic liquids. Trans Met Chem, 2002, 27: 353–358

    Article  CAS  Google Scholar 

  35. Welton T, Smith P J. Palladium catalyzed reactions in ionic liquids. Adv Organomet Chem, 2004, 51: 251–284

    CAS  Google Scholar 

  36. Li R-X. Green Solvents: The Synthesis and Application of Ionic Liquids(in Chinese). Beijing: Chemical Engineering Publishing, 2004

    Google Scholar 

  37. Mehnert C P. Supported ionic liquid catalysis. Chem Eur J, 2004, 11: 50–56

    Article  CAS  Google Scholar 

  38. Dyson P J. Biphasic chemistry utilising ionic liquids. Chimia, 2005, 59: 66–71

    Article  CAS  Google Scholar 

  39. Tao G-H, Chen Z-Y, He L, Kou Y. Design of novel liquid-liquid biphasic catalytic system: π-acceptor ligand ionic liquids. Chinese Journal of Catalysis(in Chinese), 2005, 26(3): 248–252

    Google Scholar 

  40. Fei Z, Geldbach T J, Zhao D, Dyson P J. From dysfunction to bis-function: On the design and applications of functionalised ionic liquids. Chem Eur J, 2006, 12: 2122–2130

    Article  CAS  Google Scholar 

  41. Harlow K J, Hill A F, Welton T. Convenient and general synthesis of symmetrical N,N′-disubstituted imidazolium halides. Synthesis, 1996, 6: 697–698

    Article  Google Scholar 

  42. Dzyuba S V, Bartsch R A. New room-temperature ionic liquids with C2-symmetrical imidazolium cations. Chem Commun, 2001, (16): 1466–1467

  43. Davis J H Jr. Task-specific ionic liquids. Chem Lett, 2004, 33(9): 1072–1077

    Article  CAS  Google Scholar 

  44. Pernak J, Sobaszkiewicz K, Foksowicz-Flaczyk J. Ionic liquids with symmetrical dialkoxymethyl-substituted imidazolium cations. Chem Eur J, 2004, 10(14): 3479–3485

    Article  CAS  Google Scholar 

  45. Zhao D, Fei Z, Scopelliti R, Dyson P J. Synthesis and characterization of ionic liquids incorporating the nitrile functionality. Inorg Chem, 2004, 43: 2197–2205

    CAS  Google Scholar 

  46. Moret M-E, Chaplin A B, Lawrence A K, Scopelliti R, Dyson P J. Synthesis and characterization of organometallic ionic liquids and a heterometallic carbene complex containing the chromium tricarbonyl fragment. Organometallics, 2005, 24: 4039–4048

    Article  CAS  Google Scholar 

  47. Fei Z, Zhao D, Scopelliti R, Dyson P J. Organometallic complexes deried from alkyne-functionalized imidazolium salts. Organometallis, 2004, 23: 1622–1628

    Article  CAS  Google Scholar 

  48. Mu Z-G, Zhou F, Zhang S-X, Liang Y-M, Liu W-M. Preparation and characterization of new phosphonyl-substituted imidazolium ionic liquids. Helv Chim Acta, 2004, 87: 2549–2555

    Article  CAS  Google Scholar 

  49. Zhao D, Fei Z, Geldbach T J, Scopelliti R, Laurenczy G, Dyson P J. Allyl-functionalised ionic liquids: Synthesis, characterisation, and reactivity. Helv Chim Acta, 2005, 88: 665–675

    Article  CAS  Google Scholar 

  50. Fei Z, Zhao D, Geldbach T J, Scopelliti R, Dyson P J. Structure of nitrile-functionalized alkyltrifluoroborate salts. Eur J Inorg Chem, 2005, 860–865

  51. Geldbach T J, Dyson P J. Searching for molecular arene hydrogenation catalysis in ionic liquids. J Organomet Chem, 2005, 690: 3552–3557

    Article  CAS  Google Scholar 

  52. Geldbach T J, Brown M R H, Scopelliti R, Dyson P J. Ruthenium-benzocrownether complexes: Synthesis, structures, catalysis and immobilisation in ionic liquids. J Organomet Chem, 2005, 690: 5055–5056

    Article  CAS  Google Scholar 

  53. Nama D, Kumar P G A, Pregosin P S, Geldbach T J, Dyson P J. 1H, 19F-HOESY and PGSE diffusion studies on ionic liquids: The effect of co-solvent on structure. Inorg Chim Acta, 2006, 359(6): 1907–1911

    Article  CAS  Google Scholar 

  54. Chiappe C, Pieraccini D, Zhao D, Fei Z, Dyson P J. Remarkable anion and cation effects on Stille reactions in ionic liquids. Adv Synth Catal, 2006, 348(1+2): 68–74

    Article  CAS  Google Scholar 

  55. Fei Z, Ang W-H, Geldbach T J, Scopelliti R, Dyson P J. Ionic liquid state dimers and polymers derived from imidazolium dicarboxylic acid. Chem Eur J, 2006, 12(15): 4014–4020

    Article  CAS  Google Scholar 

  56. Geldbach T J, Laurenczy G, Scopelliti R, Dyson P J. Synthesis of imidazolium tethered ruthenium(II)-arene complexes and their application in biphasic catalysis. Organometallics, 2006, 25: 733–742

    Article  CAS  Google Scholar 

  57. Muldoon M J, McLean A J, Gordon C M, Dunkin I R. Hydrogen abstraction from ionic liquids by benzophenone triplet excited states. Chem Commun, 2001, 22: 2364–2365

    Article  CAS  Google Scholar 

  58. Gallo V, Mastrorilli P, Nobile C F, Romanazzi G, Suranna G P. How does the presence of impurities change the performance of catalytic systems in ionic liquids? A case study: The Michael addition of acetylacetone to methyl vinyl ketone. J Chem Soc Dalton Trans, 2002, 23: 4339–4342

    Article  CAS  Google Scholar 

  59. Zhou Z-B, Takeda M, Ue M. New hydrophobic ionic liquids based on perfluoroalkyltrifluoroborate anions. J Fluo Chem, 2004, 125(3): 471–476

    Article  CAS  Google Scholar 

  60. Xue H, Twamley B, Shreeve J M. The first 1-alkyl-3-perfluoroalkyl-4,5-dimethyl-1,2,4-triazolium salts. J Org Chem, 2004, 69(4): 1397–1400

    Article  CAS  Google Scholar 

  61. Omotowa B A, Shreeve J M. Triazine-based polyfluorinated triquaternary liquid salts: Synthesis, characterization, and application as solvents in rhodium(I)-catalyzed hydroformylation of 1-octene. Organometallics, 2004, 23(4): 783–791

    Article  CAS  Google Scholar 

  62. Omotowa B A, Phillips B S, Zabinski J S, Shreeve J M. Phosphazene-based ionic liquids: Synthesis, temperature-dependent viscosity, and effect as additives in water lubrication of silicon nitride ceramics. Inorg Chem, 2004, 43(17): 5466–5471

    Article  CAS  Google Scholar 

  63. Gupta O D, Armstrong P D, Shreeve J M. Quaternary trialkyl(polyfluoroalkyl)ammonium salts including liquid iodides. Tetrahedron Lett, 2003, 44(52): 9367–9370

    Article  CAS  Google Scholar 

  64. Gao Y, Arritt S W, Twamley B, Shreeve J M. Guanidinium-based ionic liquids. Inorg Chem, 2005, 44(6): 1704–1712

    Article  CAS  Google Scholar 

  65. Xiao J-C, Shreeve J M. Synthesis of 2,2′-biimidazolium-based ionic liquids: Use as a new reaction medium and ligand for palladium-catalyzed suzuki cross-coupling reactions. J Org Chem, 2005, 70(8): 3072–3078

    Article  CAS  Google Scholar 

  66. Bao W, Wang Z, Li Y, Synthesis of chiral ionic liquids from natural amino acids. J Org Chem, 2003, 68(2): 591–593

    Article  CAS  Google Scholar 

  67. Jodry J J, Mikami K. New chiral imidazolium ionic liquids: 3D-network of hydrogen bonding. Tetrahedron Lett, 2004, 45(23): 4429–4431

    Article  CAS  Google Scholar 

  68. Thanh G V, Pegot B, Loupy A. Solvent-free microwave-assisted preparation of chiral ionic liquids from (-)-N-methylephedrine. Eur J Org Chem, 2004, 5: 1112–1116

    Article  CAS  Google Scholar 

  69. Tosoni M, Laschat S, Baro A. Synthesis of novel chiral ionic liquids and their phase behavior in mixtures with smectic and nematic liquid crystals. Helv Chim Acta, 2004, 87(11): 742–2749

    Article  Google Scholar 

  70. Ding J, Welton T, Armstrong D W. Chiral ionic liquids as stationary phases in gas chromatography. Anal Chem, 2004, 76(22): 6819–6822

    Article  CAS  Google Scholar 

  71. Matsumoto H, Mazda T, Miyazaki I. Room temperature molten salts based on trialkylsulfonium cations and bis(trifluorome-thylsulfonyl)imide. Chem Lett, 2000, 1430–1431

  72. Ropponen J, Lahtinen M, Busi S, Nissinen M, Kolehmainen E, Rissanen K. Novel one-pot synthesis of quaternary ammonium halides: New route to ionic liquids. New J Chem, 2004, 28(12): 1426–1430

    CAS  Google Scholar 

  73. Martiz B, Keyrouz R, Gmouh S, Vaultier M, Jouikov V. Superoxide-stable ionic liquids: New and efficient media for electrosynthesis of functional siloxanes. Chem Commun, 2004, (6): 674–675

  74. Ludley P, Karodia N. Phosphonium tosylates as solvents for the Diels-Alder reaction. Tetrahedron Lett, 2001, 42(10): 2011–2014

    Article  CAS  Google Scholar 

  75. Netherton M R, Fu G C. Air-stable trialkylphosphonium salts: Simple, practical, and versatile replacements for air-sensitive trialkylphosphines. Applications in stoichiometric and catalytic processes. Org Lett, 2001, 3(26): 4295–4298

    Article  CAS  Google Scholar 

  76. Bradaric C J, Downard A, Kennedy C, Robertson A J, Zhou Y. Industrial preparation of phosphonium ionic liquids. Green Chem, 2003, 5(2): 143–152

    Article  CAS  Google Scholar 

  77. Tao G-H, He L, Sun N, Kou Y. New generation ionic liquids: Cations derived from amino acids. Chem Commun, 2005, 28: 3562–3563

    Article  CAS  Google Scholar 

  78. Dai L, Yu S, Shan Y, He M. Novel room temperature inorganic ionic liquids. Eur J Inorg Chem, 2004, 2: 237–241

    Article  CAS  Google Scholar 

  79. Earle M J, McCormac P B, Seddon K R. Diels-Alder reactions in ionic liquids. Green Chem, 1999, 1(1): 23–25

    Article  CAS  Google Scholar 

  80. Wasserscheid P, Boesmann A, Bolm C. Synthesis and properties of ionic liquids derived from the “chiral pool”. Chem Commun, 2002, (3): 200–201

  81. Bicak N. A new ionic liquid: 2-hydroxy ethylammonium formate. J Mol Liq, 2004, 116(1): 15–18

    Article  CAS  Google Scholar 

  82. Brown R J C, Dyson P J, Ellis D J, Welton T. 1-butyl-3-methylimidazolium cobalt tetracarbonyl [bmim][Co(CO)4]: A catalytically active organometallic ionic liquid. Chem Commun, 2001, 1862–1863

  83. Dyson P J, McIndoe J S, Zhao D. Direct analysis of catalysts immobilized in ionic liquids using electrospray ionisation ion trap mass spectrometry. Chem Commun, 2003, 508–509

  84. Yoshizawa M, Ogihara W, Ohno H. Novel polymer electrolytes prepared by copolymerization of ionic liquid monomers. Poly Adv Techn, 2002, 13(8): 589–594

    Article  CAS  Google Scholar 

  85. Ohno H, Yoshizawa M, Ogihara W. Development of new class of ion conductive polymers based on ionic liquids. Electrochim Acta, 2004, 50(2–3): 255–261

    Article  CAS  Google Scholar 

  86. Ogihara W, Yoshizawa M, Ohno H. Novel ionic liquids composed of only azole ions. Chem Lett, 2004, 33(8): 1022–1023

    Article  CAS  Google Scholar 

  87. Xue H, Gao Y, Twamley B, Shreeve J M. New energetic salts based on nitrogen-containing heterocycles. Chem Mater, 2005, 17(1): 191–198

    Article  CAS  Google Scholar 

  88. Katritzky K R, Singh S, Kirichenko K, Holbrey J D, Smiglak M, Reichert W M, Rogers R D. 1-butyl-3-methylimidazolium 3,5-dinitro-1,2,4-triazolate: A novel ionic liquid containing a rigid, planar energetic anion. Chem Commun, 2005, (7): 868–870

  89. Zhou Z-B, Matsumoto H, Tatsumi K. Low-melting, low-viscous, hydrophobic ionic liquids: 1-alkyl(alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate. Chem Eur J, 2004, 10(24): 6581–6591

    Article  CAS  Google Scholar 

  90. Zhou Z-B, Matsumoto H, Tatsumi K. Low-melting, low-viscous, hydrophobic ionic liquids: Aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. Chem Eur J, 2005, 11(2): 752–766

    Article  CAS  Google Scholar 

  91. Kim H S, Kim Y, Lee H, Park K, Lee C, Chin C. Ionic liquids containing anionic selenium species: Applications for the oxidative carbonylation of aniline. Angew Chem Int Ed, 2002, 41(22): 4300–4303

    Article  CAS  Google Scholar 

  92. Zhao D, Fei Z, Ohlin C A, Laurenczy G, Dyson P J. Dualfunctionalized ionic liquids: Synthesis and characterization of imidazolium salts with a nitrile-functionalized anion. Chem Commun, 2004, 2500–2501

  93. van den Broeke J, Winter F, Deelman B-J, van Koten G. A highly fluorous room-temperature ionic liquid exhibiting fluorous biphasic behavior and its use in catalyst recycling. Org Lett, 2002, 4(22): 3851–3854

    Article  CAS  Google Scholar 

  94. McGuinness D S, Saendig N, Yates B F, Cavell K J. Kinetic and density functional studies on alkyl-carbene elimination from Pd(II) heterocylic carbene complexes: A new type of reductive elimination with clear implications for catalysis. J Am Chem Soc, 2001, 123(17): 4029–4040

    Article  CAS  Google Scholar 

  95. McGuinness D S, Cavell K J, Yates B F, Skelton B W, White A H. Oxidative addition of the imidazolium cation to zerovalent Ni, Pd, and Pt: A combined density functional and experimental study. J Am Chem Soc, 2001, 123(34): 8317–8328

    Article  CAS  Google Scholar 

  96. Chaumont A, Wipff G. Solvation of uranyl(II) and europium(III) cations and their chloro complexes in a room-temperature ionic liquid. A theoretical study of the effect of solvent “Humidity”. Inorg Chem, 2004, 43(19): 5891–5901

    Article  CAS  Google Scholar 

  97. Gaillard C, El Azzi A, Billard I, Bolvin H, Hennig C. Uranyl complexation in fluorinated acids (HF, HBF4, HPF6, HTf2N): A combined experimental and theoretical study. Inorg Chem, 2005, 44(4): 852–861

    Article  CAS  Google Scholar 

  98. Katsyuba S A, Dyson P J, Vandyukova E E, Chernova A V, Vidis A. Molecular structure, vibrational spectra, and hydrogen bonding of the ionic liquid 1-ethyl-3-methyl-1H-imidazolium tetrafluoroborate. Helv Chim Acta, 2004, 87: 2556–2565

    Article  CAS  Google Scholar 

  99. Dyson P J, Ellis D J, Welton T, Parker D G. Arene hydrogenation in a room-temperature ionic liquid using a ruthenium cluster catalyst. Chem Commun, 1999, 25–26

  100. Ellis D J, Dyson P J, Parker D G, Welton T. Hydrogenation of non-activated alkenes catalysed by water-soluble ruthenium carbonyl clusters using a biphasic protocol. J Mol Catal A: Chem, 1999, 150: 71–75

    Article  CAS  Google Scholar 

  101. Dyson P J, Ellis D J, Welton T. A temperature-controlled reversible ionic liquid-water two phase-single phase protocol for hydrogenation catalysis. Can J Chem, 2001, 79: 705–708

    Article  CAS  Google Scholar 

  102. Dyson P J, Kathryn R, Welton T. Electrospray mass spectrometry of [Ru46-C6H6)4(OH)4]4+: First direct evidence for the persistence of the cubane unit in solution and its role as a precatalyst in the hydrogenation of benzene. Inorg Chem Commun, 2001, 4: 571–573

    Article  CAS  Google Scholar 

  103. Boxwell C J, Dyson P J, Ellis D J, Welton T. A highly selective arene hydrogenation catalyst that operates in ionic liquid. J Am Chem Soc, 2002, 124: 9334–9335

    Article  CAS  Google Scholar 

  104. Dyson P J, Ellis D J, Henderson W, Laurenczy G. A comparison of ruthenium-catalysed arene hydrogenation reactions in water and 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids. Adv Syn & Catal, 2003, 345: 216–221

    Article  CAS  Google Scholar 

  105. Dyson P J, Laurenczy G, Ohlin C A, Vallance J, Welton T. Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation. Chem Commun, 2003, 2418–2419

  106. Zhao D, Dyson P J, Laurenczy G, McIndoe J S. On the catalytic activity of cluster anions in styrene hydrogenation: Considerable enhancements in ionic liquids compared to molecular solvents. J Mol Catal A: Chem, 2004, 214: 19–25

    Article  CAS  Google Scholar 

  107. Ohlin C A, Dyson P J, Laurenczy G. Carbon monoxide solubility in ionic liquids: Determination, prediction and relevance to hydroformylation. Chem Commun, 2004, 1070–1071

  108. Daguenet C, Scopelliti R, Dyson P J. Mechanistic investigations on the hydrogenation of alkenes using ruthenium(II)-arene diphosphine complexes. Organometallics, 2004, 23: 4849–4857

    Article  CAS  Google Scholar 

  109. Vidis A, Ohlin C A, Laurenczy G, Kuesters E, Sedelmeier G, Dyson P J. Rationalisation of solvent effects in the Diels-Alder reaction between cyclopentadiene and methyl acrylate in room temperature ionic liquids. Adv Syn & Catal, 2005, 347: 266–274

    Article  CAS  Google Scholar 

  110. Xiao J-C, Shreeve J M. Synthesis of 2,2′-biimidazolium-based ionic liquids: Use as a new reaction medium and ligand for palladium-catalyzed suzuki cross-coupling reactions. J Org Chem, 2005, 70(8): 3072–3078

    Article  CAS  Google Scholar 

  111. Zhao D, Fei Z, Geldbach T J, Scopelliti R, Dyson P J. Nitrile-functionalized pyridinium ionic liquids: Synthesis, characterization, and their application in carbon-carbon coupling reactions. J Am Chem Soc, 2004, 126: 15876–15882

    CAS  Google Scholar 

  112. Geldbach T J, Dyson P J. A versatile ruthenium precursor for biphasic catalysis and its application in ionic liquid biphasic transfer hydrogenation: Conventional vs task-specific catalysts. J Am Chem Soc, 2004, 126: 8114–8115

    Article  CAS  Google Scholar 

  113. Sasaki K, Matsumura S, Toshima K. A novel glycosidation of glycosyl fluoride using a designed ionic liquid and its effect on the stereoselectivity. Tetrahedron Lett, 2004, 45(38): 7043–7047

    Article  CAS  Google Scholar 

  114. Choong E S, Eun J R. Practical method to recycle a chiral (salen)Mn epoxidation catalyst by using an ionic liquid. Chem Commun, 2000, (10): 837–838

  115. Kim K-W, Song B, Choi M-Y, Kim M-J. Biocatalysis in ionic liquids: Markedly enhanced enantioselectivity of lipase. Org Lett, 2001, 3(10): 1507–1509

    Article  CAS  Google Scholar 

  116. Choong E S, Da-un J, Eun J R, Sang-gi L, Dae Y C. Osmium tetroxide-(QN)2PHAL in an ionic liquid: A highly efficient and recyclable catalyst system for asymmetric dihydroxylation of olefins. Chem Commun, 2002, (24): 3038–3039

  117. Guo H-M, Cun L-F, Gong L-Z, Mi A-Q, Jiang Y-Z. Asymmetric direct aldol reaction catalyzed by an L-prolinamide derivative: Considerable improvement of the catalytic efficiency in the ionic liquid. Chem Commun, 2005, (11): 1450–1452

  118. Jodry J J, Mikami K. New chiral imidazolium ionic liquids: 3D-network of hydrogen bonding. Tetrahedron Lett, 2004, 45(23): 4429–4431

    Article  CAS  Google Scholar 

  119. Kim E J, Ko S Y, Dziadulewicz E K. Mitsunobu alkylation of imidazole. A convenient route to chiral ionic liquids. Tetrahedron Lett, 2005, 46(4): 631–633

    Article  CAS  Google Scholar 

  120. Pegot B, Vo-Thanh G, Gori D, Loupy A. First application of chiral ionic liquids in asymmetric Baylis-Hillman reaction. Tetrahedron Lett, 2004, 45(34): 6425–6428

    Article  CAS  Google Scholar 

  121. Ding J, Desikan V, Han X, Xiao T L, Ding R, Jenks W S, Armstrong D W. Use of chiral ionic liquids as solvents for the enantioselective photoisomerization of dibenzobicyclo[2.2.2] octatrienes. Org Lett, 2005, 7(2): 335–337

    Article  CAS  Google Scholar 

  122. Seebach D, Oei H A. Mechanism of electrochemical pinacolization. First asymmetric electrosynthesis in a chiral medium. Angew Chem, 1975, 87(17): 629–630

    CAS  Google Scholar 

  123. Di Furia F, Modena G, Curci R. Chiral solvent-induced asymmetric synthesis of sulfoxides in the metal-catalyzed oxidation of sulfides by tert-butyl hydroperoxide. Tetrahedron Lett, 1976, (50): 4637–4638

  124. Laarhoven W H, Cuppen T J H M. Chiral solvent-induced asymmetric synthesis; photosynthesis of optically enriched hexahelicene. J Chem Soc Chem Commun, 1977, (2): 47–48

  125. Laarhoven W H, Cuppen T J H M. Chiral solvent-induced asymmetric synthesis. Part 2. Photosynthesis of optically enriched hexahelicenes. J Chem Soc Perkin Trans 2: Phys Org Chem, 1978, (4): 315–318

  126. Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers. Angew Chem Int Ed, 2004, 43(18): 2334–2375

    Article  CAS  Google Scholar 

  127. Adams C J, Bradley A E, Seddon K R. The synthesis of mesoporous materials using novel ionic liquid templates in water. Austr J Chem, 2001, 54(11): 679–681

    Article  CAS  Google Scholar 

  128. Jin K, Huang X, Pan L, Li J, Appel A, Wherland S, Pang L. Cu(I)(bpp)]BF4: The first extended coordination network prepared solvothermally in an ionic liquid solvent. Chem Commun, 2002, (23): 2872–2873

  129. Cooper E R, Andrews C D, Wheatley P S, Webb P B, Wormald P, Morris R E. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature, 2004, 430(7003): 1012–1016

    Article  CAS  Google Scholar 

  130. Liao J-H, Wu P-C, Bai Y-H. Eutectic mixture of choline chloride/urea as a green solvent in synthesis of a coordination polymer: [Zn(O3PCH2CO2)]NH4. Inorg Chem Commun, 2005, 8(4): 390–392

    Article  CAS  Google Scholar 

  131. Fei Z, Zhao D, Geldbach T J, Scopelliti R, Dyson P J, Antonijevic S, Bodenhausen G. A synthetic zwitterionic water channel: Characterization in the solid state by X-ray crystallography and NMR spectroscopy. Angew Chem Int Ed, 2005, 44: 5720–5725

    Article  CAS  Google Scholar 

  132. Fei Z, Geldbach T J, Zhao D, Scopelliti R, Dyson P J. A nearly planar water sheet sandwiched between strontium-imidazolium carboxylate coordination polymers. Inorg Chem, 2005, 44: 5200–5202

    Article  CAS  Google Scholar 

  133. Mehnert C P, Cook R A, Dispenziere N C, Afeworki M. Supported ionic liquid catalysis—A new concept for homogeneous hydroformylation catalysis. J Am Chem Soc, 2002, 124(44): 12932–12933

    Article  CAS  Google Scholar 

  134. Lee B S, Chi Y S, Lee J K, Choi I S, Song C E, Namgoong S K, Lee S-G. Imidazolium ion-terminated self-assembled monolayers on Au: Effects of counteranions on surface wettability. J Am Chem Soc, 2004, 126(2): 480–481

    Article  CAS  Google Scholar 

  135. Chi Y S, Lee J K, Lee S, Choi I S. Control of wettability by anion exchange on Si/SiO2 surfaces. Langmuir, 2004, 20(8): 3024–3027

    CAS  Google Scholar 

  136. Ye C, Liu W, Chen Y, Yu L. Room-temperature ionic liquids: A novel versatile lubricant. Chem Commun, 2001, (21): 2244–2245

  137. Liu W, Ye C, Gong Q, Wang H, Wang P. Tribological performance of room-temperature ionic liquids as lubricant. Tribology Lett, 2002, 13(2): 81–85

    Article  CAS  Google Scholar 

  138. Mu Z, Liu W, Zhang S, Zhou F. Functional room-temperature ionic liquids as lubricants for an aluminum-on-steel system. Chem Lett, 2004, 33(5): 524–525

    Article  CAS  Google Scholar 

  139. Deshmukh R R, Rajagopal R, Srinivasan K V. Ultrasound promoted C-C bond formation: Heck reaction at ambient conditions in room temperature ionic liquids. Chem Commun, 2001, (17): 1544–1545

  140. Dupont J, Fonseca G S, Umpierre A P, Fichtner P F P, Teixeira S R. Transition-metal nanoparticles in imidazolium ionic liquids: Recycable catalysts for biphasic hydrogenation reactions. J Am Chem Soc, 2002, 124(16): 4228–4229

    Article  CAS  Google Scholar 

  141. Scheeren C W, Machado G, Dupont J, Fichtner P F P, Texeira S R. Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids: Synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions. Inorg Chem, 2003, 42(15): 4738–4742

    CAS  Google Scholar 

  142. Zhao Y, Gao Y, Zhan D, Liu H, Zhao Q, Kou Y, Shao Y, Li M, Zhuang Q, Zhu Z. Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta, 2005, 66(1): 51–57

    Article  CAS  Google Scholar 

  143. Boennemann H, Brinkmann R, Kinge S, Ely T O, Armand M. Chloride free Pt-and PtRu-nanoparticles stabilised by “Armands’s ligand” as precursors for fuel cell catalysts. Fuel Cells, 2004, 4(4): 289–296

    Article  CAS  Google Scholar 

  144. Huang J, Jiang T, Gao H, Han B, Liu Z, Wu W, Chang Y, Zhao G. Pd nanoparticles immobilized on molecular sieves by ionic liquids: Heterogeneous catalysts for solvent-free hydrogenation. Angew Chem Int Ed, 2004, 43(11): 1397–1399

    Article  CAS  Google Scholar 

  145. Templeton AC, Wuelfing W P, Murray R W. Monolayer-protected cluster molecules. Acc Chem Res, 2000, 33(1): 27–36

    Article  CAS  Google Scholar 

  146. Cliffel D E, Zamborini F P, Gross S M, Murray R W. Mercaptoammonium-monolayer-protected, water-soluble gold, silver, and palladium clusters. Langmuir, 2000, 16(25): 9699–9702

    Article  CAS  Google Scholar 

  147. Yonezawa T, Imamura K, Kimizuka N. Direct preparation and size control of palladium nanoparticle hydrosols by water-soluble isocyanide ligands. Langmuir, 2001, 17(16): 4701–4703

    Article  CAS  Google Scholar 

  148. Brust M, Kiely C J. Some recent advances in nanostructure preparation from gold and silver particles: A short topical review. Coll and Surf A: Physicochem Engin Asp, 2002, 202(2–3): 175–186

    Article  CAS  Google Scholar 

  149. Kim K-S, Demberelnyamba D, Lee H. Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir, 2004, 20(3): 556–560

    Article  CAS  Google Scholar 

  150. Mu X-D, Evans D G, Kou Y. A general method for preparation of PVP-stabilized noble metal nanoparticles in room temperature ionic liquids. Catal Lett, 2004, 97(3–4): 151–154

    Article  CAS  Google Scholar 

  151. Mu X-D, Meng J-Q, Li Z-C, Kou Y. Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids: Long lifetime nanocluster catalysts for benzene hydrogenation. J Am Chem Soc, 2005, 127(27): 9694–9695

    Article  CAS  Google Scholar 

  152. Stamenkovic V, Markovic N M, Ross P N. Structure-relationships in electrocatalysis: Oxygen reduction and hydrogen oxidation reactions on Pt(111) and Pt(100) in solutions containing chloride ions. J Electroanal Chem, 2001, 500(1–2): 44–51

    Article  CAS  Google Scholar 

  153. Schmidt T J, Paulus U A, Gasteiger H A, Behm R J, The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions. J Electroanal Chem, 2001, 508(1–2): 41–47

    Article  CAS  Google Scholar 

  154. Parkinson G. Reviving up for alkylation. Chem Engin, 2001, 108(1): 27–33

    CAS  Google Scholar 

  155. Boesmann A, Datsevich L, Jess A, Lauter A, Schmitz C, Wasserscheid P. Deep desulfurization of diesel fuel by extraction with ionic liquids. Chem Commun, 2001, (23): 2494–2495

  156. Eber J, Wasserscheid P, Jess A. Deep desulfurization of oil refinery streams by extraction with ionic liquids. Green Chem, 2004, 6(7): 316–322

    Article  CAS  Google Scholar 

  157. Zhang S, Zhang Q, Zhang Z C. Extractive desulfurization and denitrogenation of fuels using ionic liquids. Ind & Engin Chem Res, 2004, 43(2): 614–622

    Article  CAS  Google Scholar 

  158. Lo W-H, Yang H-Y, Wie G-T. One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids. Green Chem, 2003, 5(5): 639–642

    Article  CAS  Google Scholar 

  159. Huang C, Chen B, Zhang J, Liu Z, Li Y. Desulfurization of gasoline by extraction with new ionic liquids. Energy & Fuels, 2004, 18(6): 1862–1864

    Article  CAS  Google Scholar 

  160. Wu W, Han B, Gao H, Liu Z, Jiang T, Huang J. Desulfurization of flue gas: SO2 absorption by an ionic liquid. Angew Chem Int Ed, 2004, 43(18): 2415–2417

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao Dongbin or Fei Zhaofu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Zhao, D., Fei, Z. et al. Applications of functionalized ionic liquids. SCI CHINA SER B 49, 385–401 (2006). https://doi.org/10.1007/s11426-006-2020-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-006-2020-y

Keywords

Navigation