Skip to main content
Log in

Fargesin, a component of Flos Magnoliae, stimulates glucose uptake in L6 myotubes

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Flos Magnoliae (FM) is a commonly used Chinese medicinal herb for symptomatic relief of allergic rhinitis, sinusitis and headache. Although several FM species have been used as substitutes or adulterants for clinical use, possible differences in their pharmacological actions have not been reported. To confirm the effects of FM on skeletal muscle glucose metabolism, we tested the effects of several compounds isolated from FM on glucose uptake by L6 myotubes. We found that fargesin, a component of FM, dose-dependently stimulated glucose consumption in L6 myotubes, which was accompanied by enhanced glucose transporter (GLUT)-4 translocation to the cell surface. Fargesin-stimulated glucose uptake was blocked by wortmannin, a phosphatidylinositol-3 kinase (PI3 K) inhibitor. Fargesin stimulated Akt phosphorylation, a key component in the insulin signaling pathway, which was completely inhibited by wortmannin. Here, we demonstrated that fargesin, a bioactive component of Flos Magnoliae, increases basal glucose uptake and GLUT4 translocation in L6 myotubes by activating the PI3 K–Akt pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zaid H, Antonescu CN, Randhawa VK, Klip A (2008) Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J 413:201–215

    Article  PubMed  CAS  Google Scholar 

  2. Smith AG, Muscat GE (2005) Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease. Int J Biochem Cell Biol 37:2047–2063

    Article  PubMed  CAS  Google Scholar 

  3. DeFronzon RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J (1985) Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest 76:149–155

    Article  Google Scholar 

  4. Musi N, Hayashi T, Fujii N, Hirshman MF, Witters LA, Goodyear LJ (2001) AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. Am J Physiol Endocrinol Metab 280:E677–E684

    PubMed  CAS  Google Scholar 

  5. Zheng D, MacLean PS, Pohnert SC, Knight JB, Olson AL, Winder WW, Dohm GL (2001) Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase. J Appl Physiol 91:1073–1083

    PubMed  CAS  Google Scholar 

  6. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    Article  PubMed  CAS  Google Scholar 

  7. Björnholm M, Kawano Y, Lehtihet M, Zierath JR (1997) Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation. Diabetes 46:524–527

    Article  PubMed  Google Scholar 

  8. Dohm GL, Tapscott EB, Pories WJ, Dabbs DJ, Flickinger EG, Meelheim D, Fushiki T, Atkinson SM, Elton CW, Caro JF (1998) An in vitro human muscle preparation suitable for metabolic studies. Decreased insulin stimulation of glucose transport in muscle from morbidly obese and diabetic subjects. J Clin Invest 82:486–494

    Article  Google Scholar 

  9. Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100:328–341

    Article  PubMed  CAS  Google Scholar 

  10. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    PubMed  CAS  Google Scholar 

  11. Konrad D, Rudich A, Bilan PJ, Patel N, Richardson C, Witters LA, Klip A (2005) Troglitazone causes acute mitochondrial membrane depolarisation and an AMPK-mediated increase in glucose phosphorylation in muscle cells. Diabetologia 48:954–966

    Article  PubMed  CAS  Google Scholar 

  12. Hwang JT, Kwon DY, Yoon SH (2009) AMP-activated protein kinase: a potential target for the diseases prevention by natural occurring polyphenols. N Biotechnol 26:17–22

    Article  PubMed  CAS  Google Scholar 

  13. Shen Y, Li CG, Zhou SF, Pang EC, Story DF, Xue CC (2008) Chemistry and bioactivity of Flos Magnoliae, a Chinese herb for rhinitis and sinusitis. Curr Med Chem 15:1616–1627

    Article  PubMed  CAS  Google Scholar 

  14. Kobayashi S, Kimura I, Kimura M (1996) Inhibitory effect of magnosalin derived from Flos magnoliae on tube formation of rat vascular endothelial cells during the angiogenic process. Biol Pharm Bull 19:1304–1306

    Article  PubMed  CAS  Google Scholar 

  15. Kim EK, Song MY, Kim IS, Moon WS, Ryu DG, So HS, Park R, Park JW, Kwon KB, Park BH (2008) Beneficial effect of Flos magnoliae extract on multiple low dose streptozotocin-induced type 1 diabetes development and cytokine-induced beta-cell damage. Int J Mol Med 22:481–488

    PubMed  Google Scholar 

  16. Ahmed AA, Mahmoud AA, Ali ET, Tzakou O, Couladis M, Mabry TJ, Gáti T, Tóth G (2002) Two highly oxygenated eudesmanes and 10 lignans from Achillea holosericea. Phytochemistry 59:851–856

    Article  PubMed  CAS  Google Scholar 

  17. Mitsuo M, Hiroyuki K, Hiromu K (1994) Microbial oxidation of (+)-epimagnolin a by Aspergillus niger. Phytochemistry 35:1191–1193

    Article  Google Scholar 

  18. Biavatti MW, Vieira PC, da Silva MF, Fernandes JB, Degani AL, Cass QB, Schefer AB, Ferreira AG (2001) Separation and NMR studies on lignans of Raulinoa echinata. Phytochem Anal 12:64–68

    Article  PubMed  CAS  Google Scholar 

  19. Mitsumoto Y, Burdett E, Grant A, Klip A (1991) Differential expression of the GLUT1 and GLUT4 glucose transporters during differentiation of L6 muscle cells. Biochem Biophys Res Commun 175:652–659

    Article  PubMed  CAS  Google Scholar 

  20. Ziel FH, Venkatesan N, Davidson NB (1998) Glucose transport is rate limiting for skeletal muscle glucose metabolism in normal and STZ-induced diabetic rats. Diabetes 37:885–890

    Article  Google Scholar 

  21. Holmes BF, Kurth-Kraczek EJ, Winder WW (1999) Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol 87:1990–1995

    PubMed  CAS  Google Scholar 

  22. Farese RV, Sajan MP, Standaert ML (2005) Insulin-sensitive protein kinases (atypical protein kinase C and protein kinase B/Akt): actions and defects in obesity and type II diabetes. Exp Biol Med (Maywood) 230:593–605

    CAS  Google Scholar 

  23. Guo T, Deng YX, Xie H, Yao CY, Cai CC, Pan SL, Wang YL (2011) Antinociceptive and anti-inflammatory activities of ethyl acetate fraction from Zanthoxylum armatum in mice. Fitoterapia 82:347–351

    Article  PubMed  CAS  Google Scholar 

  24. Lim H, Son KH, Bae KH, Hung TM, Kim YS, Kim HP (2009) 5-Lipoxygenase-inhibitory constituents from Schizandra fructus and Magnolia flos. Phytother Res 23:1489–1492

    Article  PubMed  CAS  Google Scholar 

  25. Kim JS, Kim JY, Lee HJ, Lim HJ, Lee DY, Kim DH, Ryu JH (2010) Suppression of inducible nitric oxide synthase expression by furfuran lignans from flower buds of Magnolia fargesii in BV-2 microglial cells. Phytother Res 24:748–753

    PubMed  CAS  Google Scholar 

  26. Chae SH, Kim PS, Cho JY, Park JS, Lee JH, Yoo ES, Baik KU, Lee JS, Park MH (1998) Isolation and identification of inhibitory compounds on TNF-alpha production from Magnolia fargesii. Arch Pharm Res 21:67–69

    Article  PubMed  CAS  Google Scholar 

  27. Watson RT, Pessin JE (2007) GLUT4 translocation: the last 200 nanometers. Cell Signal 19:2209–2217

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was performed at a laboratory supported by an endowment from Erina Co., Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Yoon Cha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, SS., Cha, BY., Choi, BK. et al. Fargesin, a component of Flos Magnoliae, stimulates glucose uptake in L6 myotubes. J Nat Med 67, 320–326 (2013). https://doi.org/10.1007/s11418-012-0685-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-012-0685-4

Keywords

Navigation