Skip to main content
Log in

A Test Method to Characterize Flexural Creep Behaviour of Pre-cracked FRC Specimens

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a proposal of test setup and methodology for testing the flexural creep behaviour of pre-cracked Fibre Reinforced Concrete (FRC) specimens, aimed at providing a basis for standardization. The design criteria used to define the equipment and methodology are presented. A test results sheet and a curve are established to present the results of creep tests, and some experimental results are shown so that the test can be validated. The equipment and methodology proposed make it possible to research the influence of factors such as concrete type, fibres type and content, applied load, and crack opening value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. fib (2010) MODEL CODE 2010 (First complete draft)

  2. Ministerio de Fomento (2008) EHE-08 Instrucción de Hormigón Estructural. Real Decreto 1247/2008

  3. American Concrete Institute (2008) ACI 318–08. ACI Committee 318: Building Code Requirements for reinforced Concrete. Farmington Hills, MI

  4. European Standards (2007) EN 14651:2007. Test method for metallic fibre concrete - Measuring the flexural tensile strength (limit of proportionality (LOP), residual)

  5. Bernard ES (2004) Creep of cracked fibre reinforced shotcrete panels. In: Shotcrete: More Engineering Developments. Taylor & Francis Group, London, pp 47–57

  6. Mangat PS, Motamedi M (1986) Compression creep behaviour of steel fibre reinforced cement composites. Mater Struct 19(113):361–369

    Article  Google Scholar 

  7. Chern JC, Young CH (1989) Compressive creep and shrinkage of steel fibre reinforced concrete. Int J Cem Lightweight Concr 11(4):205–214

    Article  Google Scholar 

  8. Barragán BE, Zerbino RL (2008) Creep behaviour of cracked steel fibre reinforced concrete beams. In: Proceedings of the 7th Int. RILEM Symp. on Fibre Reinforced Concrete: Design and Applications (BEFIB 2008). Chennai, pp 577–586

  9. Erzar B, Forquin P (2010) An experimental method to determine the tensile strength of concrete at high rates of strain. Exp Mech 50:941–955. doi:10.1007/s11340-009-9284-z

    Article  Google Scholar 

  10. Chen TC, Yin WQ, Ifju PG (2010) Shrinkage measurement in concrete materials using cure reference method. Exp Mech 50:999–1012. doi:10.1007/s11340-009-9300-3

    Article  Google Scholar 

  11. Granju JL, Rossi P, Chanvillard G, et al (2000) Delayed behaviour of cracked SFRC beams. In: Proceedings of the 5th Int. RILEM Symp. on Fibre Reinforced Concrete (BEFIB 2000). Lyon, pp 511–520

  12. Chanvillard G, Roque O (1999) Behaviour of fibre reinforced concrete cracked section under sustained load. In: Proceedings of the 3rd Int. Workshop on High Performance Fibre Reinforced Cement Composites (HPFRCC3). RILEM publications, Mainz, pp 239–250

  13. Mackay J, Trottier JF (2004) Post-crack behaviour of steel and synthetic FRC under flexural loading. In: Shotcrete: More Engineering Developments. Taylor & Francis Group, London, pp 183–192

  14. Cochrane JT (2003) Flexural creep behaviour of fibre reinforced concrete under high temperatures. Master of applied science thesis, Dalhousie University. Canada

  15. Mackay J (2002) Behaviour of steel and synthetic fibre reinforced concrete under flexural creep loading. Master of applied science thesis, Dalhousie University. Canada

  16. Bast T, Eder A, Kusterle W (2007) Kriechversuche an kunststoffmakrofaserbetonen-Untersuchungen zum langzeitverhalten von faserbetonen unter biegezugbeanspruchung. Ein zwischenbericht. Faserbeton beiträge zum 11. Vilser Baustofftag, pp 32–35

  17. Swamy RN, Theodorakopoulos DD (1979) Flexural creep of fibre reinforced cement composites. Int J Cem Lightweight Concr 1(1):37–47

    Google Scholar 

  18. Kurtz S, Balaguru P (2000) Postcrack creep of polymeric fibre-reinforced concrete in flexure. Cem Concr Res 30:183–90

    Article  Google Scholar 

  19. Buratti N, Mazzotti C, Savoia (2010) Long-term behaviour of fiber reinforced SCC beams. In: Proceedings of the 6th Int. RILEM Symposium on Self Compacting Concrete. Montreal, pp 439–450

  20. Torrijos MC, Barragán BE, Zerbino RL (2010) Placing conditions, mesostructural characteristics and post-cracking response of fibre reinforced self-compacting concretes. Constr Build Mater 24:1078–1085

    Article  Google Scholar 

  21. Arango SE (2010) Fluencia a flexión del hormigón reforzado con fibras de acero (SFRC) en estado fisurado. PhD Thesis, Universitat Politècnica de València. Spain

  22. AENOR (2004) UNE 83.502:2004. Hormigones con fibras. Fabricación en laboratorio. Asociación Española de Normalización y Certificación, Madrid

  23. AENOR (2004) UNE 83.503:2004. Hormigones con fibras. Medida de la docilidad por medio del cono invertido. Asociación Española de Normalización y Certificación, Madrid

  24. AENOR (2004) UNE 83.504:2004. Hormigones con fibras. Fabricación y conservación de probetas para los ensayos de laboratorio. Asociación Española de Normalización y Certificación, Madrid

  25. AENOR (2009) UNE-EN 12350–2:2009. Ensayos de hormigón fresco. Parte 2: Ensayo de asentamiento. Asociación Española de Normalización y Certificación, Madrid

Download references

Acknowledgements

The present study was supported by the Spanish Universitat Politècnica de València (UPV), València, Spain; by the project BIA 2009–12722 of the Spanish Ministry; and by the project “HABITAT 2030” [PS-380000-2008-11] funded by both the Spanish Ministry of Science and Innovation and the European Regional Development Found. The authors would like to express their gratitude for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Serna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arango, S.E., Serna, P., Martí-Vargas, J.R. et al. A Test Method to Characterize Flexural Creep Behaviour of Pre-cracked FRC Specimens. Exp Mech 52, 1067–1078 (2012). https://doi.org/10.1007/s11340-011-9556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-011-9556-2

Keywords

Navigation