Skip to main content
Log in

Effect of Facesheet Thickness on Dynamic Response of Composite Sandwich Plates to Underwater Impulsive Loading

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The response of sandwich structures to underwater blast loading is analyzed. The analysis focuses on the effect of varying structural attributes on energy dissipation and deformation. The structures analyzed are planar sandwich plates with polymer foam cores and fiber-reinforced polymer composite facesheets. The thickness of the facesheets is varied under the conditions of constant material properties and core dimensions. The fully three-dimensional finite-element simulations carried out account for underwater blast loading through the use of the Mie-Gruneisen equation-of-state of a linear Hugoniot form and a modified Drucker-Prager core crushing model. The impulse imparted to the panels is varied from 4 to 42 kPa·s. The results show that there exists an optimal thickness of the facesheets which maximizes energy absorption in the core and minimizes the overall deflection of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zenkert D (1995) An introduction to sandwich construction. West Midlands U.K., Engineering Materials Advisory Services Ltd

  2. Plantema F (1996) Sandwich construction. Wiley, New York

    Google Scholar 

  3. Allen H (1969) Analysis and design of structural sandwich panels. Pergamon Press, Oxford

    Google Scholar 

  4. Steeves CA, Fleck NA (2004) Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part II: experimental investigation and numerical modelling. Int J Mech Sci 46(4):585–608

    Article  MATH  Google Scholar 

  5. Tagarielli VL, Deshpande VS, Fleck NA (2007) The dynamic response of composite sandwich beams to transverse impact. Int J Solid Struct 44(7–8):2442–2457

    Article  Google Scholar 

  6. Schubel PM, Luo JJ, Daniel IM (2007) Impact and post impact behavior of composite sandwich panels. Compos Appl Sci Manuf 38(3):1051–1057

    Article  Google Scholar 

  7. Nemes JA, Simmonds KE (1992) Low-velocity impact response of foam-core sandwich composites. J Compos Mater 26(4):500–519

    Article  Google Scholar 

  8. Mines RAW, Worrall CM, Gibson AG (1994) The static and impact behavior of polymer composite sandwich beams. Compos 25(2):95–110

    Article  Google Scholar 

  9. Abot JL, Daniel IM (2001) Composite sandwich beams under low velocity impact. Proc. of AIAA Conf., Seattle

  10. Schubel PM, Luo JJ, Daniel IM (2005) Low velocity impact behavior of composite sandwich panels. Compos Appl Sci Manuf 36(10):1389–1396

    Article  Google Scholar 

  11. Xue ZY, Hutchinson JW (2003) Preliminary assessment of sandwich plates subject to blast loads. Int J Mech Sci 45(4):687–705

    Article  MATH  Google Scholar 

  12. Xue ZY, Hutchinson JW (2004) A comparative study of impulse-resistant metal sandwich plates. Int J Impact Eng 30(10):1283–1305

    Article  Google Scholar 

  13. Liang YM et al (2007) The response of metallic sandwich panels to water blast. J Appl Mech Trans Asme 74(1):81–99

    Article  MATH  Google Scholar 

  14. Wei Z et al (2008) The resistance of metallic plates to localized impulse. J Mech Phys Solid 56(5):2074–2091

    Article  Google Scholar 

  15. Tekalur SA, Bogdanovich AE, Shukla A (2009) Shock loading response of sandwich panels with 3-D woven E-glass composite skins and stitched foam core. Compos Sci Tech 69(6):736–753

    Article  Google Scholar 

  16. Espinosa HD, Lee S, Moldovan N (2006) A novel fluid structure interaction experiment to investigate deformation of structural elements subjected to impulsive loading. Exp Mech 46(6):805–824

    Article  Google Scholar 

  17. Horacio D, Espinosa DG, Latourte F, Ravi S (2010) Bellur-Ramaswamy Failure modes in solid and sandwich composite panels subjected to underwater impulsive loads. 9th International Conference on Sandwich Structures, ICSS9

  18. Wei Z et al (2007) Analysis and interpretation of a test for characterizing the response of sandwich panels to water blast. Int J Impact Eng 34(10):1602–1618

    Article  Google Scholar 

  19. LeBlanc J, Shukla A (2010) Dynamic response and damage evolution in composite materials subjected to underwater explosive loading: an experimental and computational study. Compos Struct 92(10):2421–2430

    Article  Google Scholar 

  20. Arora H, Hooper P, Dear JP (2010) Blast and other high rate loading composite sandwich materials. 9th International Conf on Sandwich Structures (ICSS-9), Ravichandran, G. ed, California Institute of Technology, Pasedena, USA (June 2010), Key-note paper MA3.1

  21. Saha MC, Kabir ME, Jeelani S (2008) Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles. Mater Sci Eng a-Struct Mater Prop Microstruct Process 479(1–2):213–222

    Google Scholar 

  22. Chakravarty U et al (2003) Strain rate effects on sandwich core materials: an experimental and analytical investigation. Acta Mater 51(5):1469–1479

    Article  Google Scholar 

  23. Tagarielli VL, Deshpande VS, Fleck NA (2008) The high strain rate response of PVC foams and end-grain balsa wood. Compos Part B-Eng 39(1):83–91

    Article  Google Scholar 

  24. Mouritz AP (1996) The effect of underwater explosion shock loading on the flexural properties of GRP laminates. Int J Impact Eng 18(2):129–139

    Article  Google Scholar 

  25. Mouritz AP, Saunders DS, Buckley S (1994) The damage and failure of Grp laminates by underwater explosion shock loading. Compos 25(6):431–437

    Article  Google Scholar 

  26. McShane GJ et al (2008) Dynamic rupture of polymer-metal bilayer plates. Int J Solid Struct 45(16):4407–4426

    Article  MATH  Google Scholar 

  27. Dharmasena K et al (2009) Dynamic response of a multilayer prismatic structure to impulsive loads incident from water. Int J Impact Eng 36(4):632–643

    Article  Google Scholar 

  28. DIAB Inc., S.D., DeSoto, Texas 75115, USA http://www.diabgroup.com/europe/literature/e_pdf_files/man_pdf/H_man.pdf Accessed 5 May 2011

  29. Zhang J et al (1998) Constitutive modeling of polymeric foam material subjected to dynamic crash loading. Int J Impact Eng 21(5):369–386

    Article  Google Scholar 

  30. Hibbit, Karlsson, and Sorensen (2009) Abaqus/Explicit User’s Manual, Version 6.9

  31. Deshpande VS, Fleck NA (2000) Isotropic constitutive models for metallic foams. J Mech Phys Solid 48(6–7):1253–1283

    Article  MATH  Google Scholar 

  32. Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech Trans Asme 47(2):329–334

    Article  Google Scholar 

  33. Taylor GI (1941) The pressure and impulse of submarine explosion waves on plates. The scientific papers of G I Taylor, vol. III. Cambridge, Cambridge University Press, pp 287–303

    Google Scholar 

  34. Camanho PP, Davila CG, de Moura MF (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37(16):1415–1438

    Article  Google Scholar 

  35. Advanced Composites Group Inc, S., 129th East Avenue, Tulsa, Oklahoma, 74134, USA http://www.advanced-composites.co.uk/data_catalogue/catalogue%20files/pds/PDS1154_VTM260_Issue7.pdf Accessed 5 May 2011.

Download references

Acknowledgement

The authors gratefully acknowledge support by the Office of Naval Research through grant numbers N00014-09-1-0808 and N00014-09-1-0618 (program manager: Dr. Yapa D. S. Rajapakse). Calculations are carried out on the HPC cluster in the DPRL at Georgia Tech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avachat, S., Zhou, M. Effect of Facesheet Thickness on Dynamic Response of Composite Sandwich Plates to Underwater Impulsive Loading. Exp Mech 52, 83–93 (2012). https://doi.org/10.1007/s11340-011-9538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-011-9538-4

Keywords

Navigation