Skip to main content

Advertisement

Log in

Genome of papaya, a fast growing tropical fruit tree

  • Review
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Papaya is a major fruit crop in tropical and subtropical regions worldwide. It has long been recognized as a nutritious and healthy fruit rich in vitamins A and C. Its small genome, unique aspects of nascent sex chromosomes, and agricultural importance are justifications for sequencing the genome. A female plant of the transgenic variety SunUp was selected for sequencing its genome to avoid the complication of assembling the XY chromosomes in a male or hermaphrodite plant. The draft genome revealed fewer genes than sequenced genomes of flowering plants, partly due to its lack of genome wide duplication since the ancient triplication event shared by eudicots. Most gene families have fewer members in papaya, including significantly fewer disease resistance genes. However, striking amplifications in gene number were found in some functional groups, including MADS-box genes, starch synthases, and volatiles that might affect the speciation and adaptation of papaya. The draft genome was used to clone a gene controlling fruit flesh color and to accelerate the construction of physical maps of sex chromosomes in papaya. Finishing the papaya genome and re-sequencing selected genomes in the family will further facilitate papaya improvement and the study of genome and sex chromosome evolution in angiosperms, particularly in Caricaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ackerman CM, Yu Q, Kim S, Paull RE, Moore PH, Ming R (2008) B-class MADS-box genes in trioecious papaya: two paleoAP3 paralogs, CpTM6-1 and CpTM6-2, and a PI ortholog CpPI. Planta 227:741–753

    PubMed  CAS  Google Scholar 

  • Adamczyk BJ, Fernandez DE (2009) MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol 149:1713–1723

    PubMed  CAS  Google Scholar 

  • Almora K, Pino JA, Hernandez M, Duarte C, Gonzalez J, Roncal E (2004) Evaluation of volatiles from ripening papaya (Carica papaya L., var. Maradol roja). Food Chem 86:127–130

    CAS  Google Scholar 

  • Alonso JM, Stepanova AN (2004) The ethylene signaling pathway. Science 306:1513–1515

    PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci U S A 100:2992–2997

    PubMed  CAS  Google Scholar 

  • Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, Ribas Depouplana L, Martinez-Castilla L, Yanofsky MF (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci U S A 97:5328–5333

    PubMed  CAS  Google Scholar 

  • Andersen MD, Busk PK, Svendsen I, Moller BL (2000) Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. J Biol Chem 275:1966–1975

    PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    CAS  Google Scholar 

  • Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R (2001) CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:101–111

    PubMed  CAS  Google Scholar 

  • Bak S, Nielsen HL, Halkier BA (1998a) The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates. Plant Mol Biol 38:725–734

    PubMed  CAS  Google Scholar 

  • Bak S, Feyereisen R (2001) The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127:108–118

    PubMed  CAS  Google Scholar 

  • Bak S, Kahn RA, Nielsen HL, Møller BL, Halkier BA (1998b) Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Mol Biol 36:393–405

    PubMed  CAS  Google Scholar 

  • Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489

    PubMed  CAS  Google Scholar 

  • Becker A, Winter KU, Meyer B, Saedler H, Theissen G (2000) MADS-Box gene diversity in seed plants 300 million years ago. Mol Biol Evol 17:1425–1434

    PubMed  CAS  Google Scholar 

  • Bemer M, Gordon J, Weterings K, Angenent GC (2010) Divergence of recently duplicated M{gamma}-type MADS-box genes in Petunia. Mol Biol Evol 27:481–495

    PubMed  CAS  Google Scholar 

  • Bennett M (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc R Soc Lond 181:109–135

    PubMed  CAS  Google Scholar 

  • Bennett RN, Kiddle G, Wallsgrove RM (1997) Biosynthesis of benzylglucosinolate, cyanogenic glucosides and phenylpropanoids in Carica papaya. Phytochemistry 45:59–66

    CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    PubMed  CAS  Google Scholar 

  • Blas AL, Ming R, Liu Z, Veatch OJ, Paull RE, Moore PH, Yu Q (2010) Cloning of the papaya chromoplast-specific lycopene β-Cyclas, CpCYC-b, controlling fruit flesh color reveals conserved microsynteny and a recombination hot spot. Plant Physiol 152:2013–2022

    PubMed  CAS  Google Scholar 

  • Blas AL, Yu Q, Chen C, Veatch O, Moore PH, Paull RE, Ming R (2009) Enrichment of a papaya high-density genetic map with AFLP markers. Genome 52:716–725

    PubMed  CAS  Google Scholar 

  • Bowers JE, Chapman BA, Rong JK, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    PubMed  CAS  Google Scholar 

  • Büttner M (2007) The monosaccharide transporter(-like) gene family in Arabidopsis. FEBS Lett 581:2318–2324

    PubMed  Google Scholar 

  • Cano MP, De Ancos B, Lobo G (1995) Peroxidase and polyphenoloxidase activities in papaya during postharvest ripening and after freezing–thawing. J Food Sci 60:815–820

    CAS  Google Scholar 

  • Cano MP, Lobo MG, De Ancos B, Galeazzi MAM (1996) Polyphenol oxidase from Spanish hermaphrodite and female papaya fruits (Carica papaya Cv. Sunrise, Solo Group). J Agric Food Chem 44:3075–3079

    CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    PubMed  CAS  Google Scholar 

  • Chan HT (1979) Sugar composition of papaya during development. Hortscience 14:140–141

    CAS  Google Scholar 

  • Chen C, Yu Q, Hou S, Li Y, Eustice M, Skelton RL, Veatch O, Herds R, Diebold L, Saw J, Feng Y, Bynum L, Wang L, Moore PH, Paull RE, Alam M, Ming R (2007) Construction of a sequence-tagged high-density genetic map of papaya for comparative structural and evolutionary genomics in Brassicales. Genetics 177:2481–2491

    PubMed  CAS  Google Scholar 

  • Chen NJ, Paull RE (2003) Endoxylanase expressed during papaya fruit ripening: purification, cloning and characterization. Funct Plant Biol 30:433–441

    CAS  Google Scholar 

  • Chen NM, Paull RE (1985) Development and prevention of chilling injury in papaya fruit. J Amer Soc Hort Sci 111:639–643

    Google Scholar 

  • Chen SX, Glawischnig E, Jørgensen K, Naur P, Jørgensen B, Olsen CE, Hansen CH, Rasmussen H, Pickett JA, Halkier BA (2003) Cytochrome P450 CYP79F1 and CYP79F2 genes catalyze the first step in the biosynthesis of short-chain and long-chain aliphatic glucosinolates in Arabidopsis. Plant J 33:923–937

    PubMed  CAS  Google Scholar 

  • Ching LS, Mohamed S (2001) Alpha-tocopherol content in 62 edible tropical plants. J Agric Food Chem 49:3101–3105

    PubMed  CAS  Google Scholar 

  • Choi D, Cho DT, Lee Y (2006) Expansins: expanding importance in plant growth and development. Physiol Plant 126:511–518

    CAS  Google Scholar 

  • Colombo M, Masiero S, Vanzulli S, Lardelli P, Kater MM, Colombo L (2008) AGL23, a type I MADS-box gene that controls female gametophyte and embryo development in Arabidopsis. Plant J 54:1037–1048

    PubMed  CAS  Google Scholar 

  • Cui LY, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumu-ganathan K, Barakat A, Albert VA, Ma H, dePamphilis CW (2006) Widespread genome duplications throughout the history of flowering plants. Genome Res 16:738–749

    PubMed  CAS  Google Scholar 

  • Czaplewski C, Grzonka Z, Jaskolski M, Kasprzykowski F, Kozk M (1999) Binding modes of a new epoxysuccinyl-peptide inhibitory of cysteine proteases. Where and how do cysteine proteases express their selectivity? Biochim Biophys Acta 1431:290–305

    PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    PubMed  CAS  Google Scholar 

  • De Bodt S, Raes J, Florquin K, Rombauts S, Rouze P, Theissen G, Van de Peer Y (2003) Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. J Mol Evol 56:573–586

    PubMed  Google Scholar 

  • Deputy JC, Ming R, Ma H, Liu Z, Fitch MMM et al (2002) Molecular markers for sex determination in papaya (Carica papaya L.). Theor Appl Genet 106:107–111

    PubMed  CAS  Google Scholar 

  • DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243–1249

    PubMed  CAS  Google Scholar 

  • Diaz-Riquelme J, Lijavetzky D, Martinez-Zapater JM, Carmona MJ (2009) Genome-wide analysis of MIKCC-type MADS box genes in grapevine. Plant Physiol 149:354–369

    PubMed  CAS  Google Scholar 

  • Dibley SJ, Gear ML, Xiao Y, Rosche EG, Offler CE, McCurdy DW, Patrick JW (2005) Temporal and spatial expression of hexose transporters in developing tomato (Lycopersicon esculentum) fruit. Funct Plant Biol 32:777–785

    CAS  Google Scholar 

  • Duarte JM, Cui L, Wall PK, Zhang Q, Zhang X, Leebens-Mack J, Ma H, Altman N, dePamphilis CW (2006) Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Mol Biol Evol 23:469–478

    PubMed  CAS  Google Scholar 

  • El Moussaoui A, Nijs M, Paul C, Wintjens R, Vincentelli J, Azarkan M, Looze Y (2001) Revisiting the enzymes stored in the laticifers of Carica papaya in the context of their possible participation in the plant defence mechanism. Cell Mol Life Sci 58:556–570

    PubMed  CAS  Google Scholar 

  • Flath RA, Light DM, Jang EB, Mon TR, John JO (1990) Headspace examination of volatile emissions form ripening papaya (Carica papaya L., Solo variety). J Agric Food Chem 38:1060–1063

    CAS  Google Scholar 

  • Franco MRB, Rodriguez ADB (1993) Volatile components of two pawpaw cultivars. Arq Biol Tecnol 36:613–632

    CAS  Google Scholar 

  • Fridman M, Zamir D (2003) Functional divergence of a syntenic invertase gene family in tomato, potato, and Arabidopsis. Plant Physiol 131:603–609

    PubMed  CAS  Google Scholar 

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1992) Virus resistance papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Biotechnology 10:1466–1472

    CAS  Google Scholar 

  • Gear ML, McPhillips ML, Patrick JW, McCurdy DW (2000) Hexose transporters of tomato: molecular cloning, expression analysis and functional characterization. Plant Mol Biol 44:687–697

    PubMed  CAS  Google Scholar 

  • Gramzow L, Ritz MS, Theissen G (2010) On the origin of MADS-domain transcription factors. Trends Genet 26:149–153

    PubMed  CAS  Google Scholar 

  • Halkier BA, Nielsen HL, Koch B, Moller BL (1995) Purification and characterization of recombinant cytochrome P450TYR expressed at high levels in Escherichia coli. Arch Biochem Biophys 322:369–377

    PubMed  CAS  Google Scholar 

  • Hanada K, Zhang X, Borevitz JO, Li WH, Shiu SH (2007) A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res 17:632–640

    PubMed  CAS  Google Scholar 

  • Hansen CH, Wittstock U, Olsen CE, Hick AJ, Pickett JA, Halkier BA (2001) Cytochrome P450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. J Biol Chem 276:11078–11085

    PubMed  CAS  Google Scholar 

  • Hemm MR, Ruegger MO, Chapple C (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15:179–194

    PubMed  CAS  Google Scholar 

  • Hofmeyr JDJ (1938) Genetical studies of Carica papaya L.I. The inheritance and relation of sex and certain plant characteristics. II Sex reversal and sex forms. South African Department of Agriculture and Science Bulletin no. 187

  • Hortensteiner S (2006) Chlorophyll degradation during senescence. Ann Rev Plant Biol 57:55–77

    CAS  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    PubMed  CAS  Google Scholar 

  • Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci U S A 97:2379–2384

    PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Lau-cou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scar-pelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    PubMed  CAS  Google Scholar 

  • Janick J (2006) Origins of fruit culture and fruit breeding. In: Lamkey KR, Lee M (eds) Plant breeding: the Arnel R. Hallauer International Symposium. Blackwell, Ames, pp 269–282

    Google Scholar 

  • Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Am J Bot 95:229–235

    CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    PubMed  CAS  Google Scholar 

  • Katague DB, Kirch ER (1965) Chromatographic analysis of volatile components of papaya fruits. J Pharm Sci 54:891–894

    PubMed  CAS  Google Scholar 

  • Kevany B, Taylor M, Dal Cin V, Klee HJ (2007) Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J 51:458–467

    PubMed  CAS  Google Scholar 

  • Klee H, Tieman D (2002) The tomato ethylene receptor gene family: form and function. Physiol Plant 115:336–341

    PubMed  CAS  Google Scholar 

  • Koch MA, Kiefer M (2005) Genome evolution among cruciferous plants: a lecture from the comparison of the genetic maps of three diploid species—Capsella rubella, Arabidopsis lyrata subsp Petraea, and A. thaliana. Am J Bot 92:761–767

    PubMed  Google Scholar 

  • Koch BM, Sibbesen O, Halkier BA, Svendsen I, Møller BL (1995) The primary sequence of cytochrome P450tyr, the multifunctional N-hydroxylase catalyzing the conversion of L-tyrosine top-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Arch Biochem Biophys 323:177–186

    PubMed  CAS  Google Scholar 

  • Kohler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U (2008) The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev 17:1540–1553

    Google Scholar 

  • Kohler C, Page DR, Gagliardini V, Grossniklaus U (2005) The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting. Nat Genet 37:28–30

    PubMed  Google Scholar 

  • Kuittinen H, de Haan AA, Vogl C, Oikarinen S, Leppala J, Koch M, Mitchell-Olds T, Langley CH, Sa-volainen O (2004) Comparing the linkage maps of the close relatives Arabidopsis lyrata and A-thaliana. Genetics 168:1575–1584

    PubMed  CAS  Google Scholar 

  • Lai CW, Yu Q, Hou S, Skelton RL, Jones MR, Lewis KL, Murray J, Eus-tice M, Guan P, Agbayani R, Moore PH, Ming R, Presting GG (2006) Analysis of papaya BAC end sequences reveals first insights into the organization of a fruit tree genome. Mol Genet Genomics 276:1–12

    PubMed  CAS  Google Scholar 

  • Leseberg CH, Li A, Kang H, Duvall M, Mao L (2006) Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378:84–94

    PubMed  CAS  Google Scholar 

  • Liu ZY, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu QY, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352

    PubMed  CAS  Google Scholar 

  • Ma H, Moore PH, Liu Z, Kim MS, Yu Q, Fitch MMM, Sekioka T, Paterson AH, Ming R (2004) High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya. Genetics 166:419–436

    PubMed  CAS  Google Scholar 

  • MacLeod AJ, Pieris NM (1983) Volatile components of papaya (Carica papaya L.) with particular reference to glucosinolate products. J Agric Food Chem 31:1005–1008

    CAS  Google Scholar 

  • Manenoi A, Paull RE (2007) Papaya fruit softening, endoxylanase gene expression, protein and activity. Physiol Plant 131:470–480

    PubMed  CAS  Google Scholar 

  • Manshardt RM, Wenslaff TF (1989) Interspecific hybridization of papaya with other Carica species. J Am Soc Hortic Sci 114:689–694

    Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall expansion in plants. Plant Cell 4:1425–1433

    PubMed  CAS  Google Scholar 

  • Mello VJ, Gomes MT, Lemos FO, Delfino JL, Adnrade SP, Lopes MT, Salas CE (2008) The gastric ulcer protective and healing role of cysteine proteinases from Carica candamarcenis. Phytomedicine 15:237–244

    PubMed  Google Scholar 

  • Michael TP, Breton G, Hazen SP, Priest H, Mockler TC, Kay SA, Chory J (2008) A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol 6:e225. doi:10.1371

    PubMed  Google Scholar 

  • Miean KH, Mohammed S (2001) Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 49:3106–3112

    PubMed  CAS  Google Scholar 

  • Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275:33712–33717

    PubMed  CAS  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    PubMed  CAS  Google Scholar 

  • Ming R, Moore PH, Zee F, Abbey CA, Ma H, Paterson AH (2001) Construction and characterization of a papaya BAC library as a foundation for molecular dissection of a tree-fruit genome. Theor Appl Genet 102:892–899

    CAS  Google Scholar 

  • Mizutani M, Ohta D (2010) Diversification of P450 genes during land plant evolution. Ann Rev Plant Biol 61:291–315

    CAS  Google Scholar 

  • Mucyn TS, Clemente A, Andriotis VM, Balmuth AL, Oldroyd GE, Staskawicz BJ, Rathjen JP (2006) The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell 18:2792–2806

    PubMed  CAS  Google Scholar 

  • Nakatsuka A, Murachi S, Okunishi H, Shiomi S, Nakano R, Kubo Y, Inaba A (1998) Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, of 1-aminocyclopropane-1-carboxylase oxidase and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol 118:1295–1305

    PubMed  CAS  Google Scholar 

  • Nam J, Kim J, Lee S, An G, Ma H, Nei M (2004) Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc Natl Acad Sci U S A 101:1910–1915

    PubMed  CAS  Google Scholar 

  • Nelson DR, Ming R, Allm M, Schuler MA (2008) Comparison of cytochrome P450 genes from six plant genomes. Trop Plant Biol 1:216–235

    CAS  Google Scholar 

  • Nishijima W (2002) A new disease hits papaya. Agriculture Hawaii 3:26

    Google Scholar 

  • Orr HA (1990) “Why polyploidy is rarer in animals than in plants” revisited. Am Nat 136:759–770

    Google Scholar 

  • Otsuki N, Dang NH, Kumagai E, Kondo A, Iwata S, Morimoto C (2010) Aqueous extracts of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. J Ethnopharmacology 127:760–767

    Google Scholar 

  • Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551

    PubMed  CAS  Google Scholar 

  • Passardi F, Longet D, Penel C, Dunand C (2004) The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochem 65:1879–1893

    CAS  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 101:9903–9908

    PubMed  CAS  Google Scholar 

  • Paull RE (1993) Pineapple and Papaya. In: Seymour G, Taylor J, Tucker G (eds) Biochemistry of fruit ripening. Chapman & Hall, London, pp 291–323

    Google Scholar 

  • Paull RE, Chen NJ (1983) Postharvest variation in cell wall-degrading enzymes of papaya (Carica papaya L.) during fruit ripening. Plant Physiol 72:382–385

    PubMed  CAS  Google Scholar 

  • Paull RE, Irikura B, Wu PF, Turano H, Chen NJ, Blas A, Fellman JK, Gschwend AR, Wai CM, Yu QY, Presting G, Alam M, Ming R (2008) Fruit development, ripening and quality related genes in the papaya genome. Trop Plant Biol 1:246–277

    CAS  Google Scholar 

  • Pedro CDJ, da Costa FR, Pereira TNS, Neto MF, Pereira MG (2009) Karyotype determination in three Caricaceae species emphasizing the cultivated form (C. papaya L.). Caryologia 62:10–15

    Google Scholar 

  • Peng ZY, Zhou X, Li L, Yu X, Li H, Jiang Z, Cao G, Bai M, Wang X, Jiang C, Lu H, Hou X, Qu L, Wang Z, Zuo J, Fu X, Su Z, Li S, Guo H (2009) Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis. Nucleic Acids Res 37:D975–D982

    PubMed  CAS  Google Scholar 

  • Pfeil BE, Schlueter JA, Shoemaker RC, Doyle JJ (2005) Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families. Syst Biol 54:441–454

    PubMed  CAS  Google Scholar 

  • Picton S, Gray J, Barton S, AbuBakar U, Lowe A, Grierson D (1993) cDNA cloning and characterisation of nove1 ripening-related mRNAs with altered patterns of accumulation in the ripening inhibitor (rin) tomato ripening mutant. Plant Mol Biol 23:193–207

    PubMed  CAS  Google Scholar 

  • Pino JA, Almora K, Marbot R (2003) Volatile components of papaya (Carica papaya L., Maradol variety) fruit. Flavour Fragrance J 18:492–496

    CAS  Google Scholar 

  • Porter BW, Aizawa KS, Zhu YJ, Christopher DA (2008) Differentially expressed and new non-protein-coding genes from a Carica papaya root transcriptome survey. Plant Sci 174:38–50

    CAS  Google Scholar 

  • Porter BW, Paidi M, Ming R, Alam M, Nishijima N, Zhu YJ (2009) Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Mol Genet Genomics 261:609–621

    Google Scholar 

  • Portereiko MF, Lloyd A, Steffen JG, Punwani JA, Otsuga D, Drews GN (2006) AGL80 is required for central cell and endosperm development in Arabidopsis. Plant Cell 18:1862–1872

    PubMed  CAS  Google Scholar 

  • Qiu YX, Nishina MS, Paull RE (1995) Papaya fruit growth, calcium uptake and fruit ripening. J Amer Soc Hortic Sci 120:246–253

    Google Scholar 

  • Quecini V, Torres GAM, de Rosa VE Jr, Gimenes MA, Machado JBdM, Figueira AVdO, Benedito V, Targon MLPN, Cristofani-Yaly M (2007) In silico analysis of phytohormone metabolism and communication pathways in citrus transcriptome. Genet Mol Biol 30:713–733

    CAS  Google Scholar 

  • Reeves PA, He Y, Schmitz RJ, Amasino RM, Panella LW, Richards CM (2007) Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: evidence from the sugar beet (Beta vulgaris). Genetics 176:295–307

    PubMed  CAS  Google Scholar 

  • Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Palme K (2001) bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13:351–367

    PubMed  CAS  Google Scholar 

  • Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606

    Google Scholar 

  • Rijpkema AS, Gerats T, Vandenbussche M (2007) Evolutionary complexity of MADS complexes. Curr Opin Plant Biol 10:32–38

    PubMed  CAS  Google Scholar 

  • Sampedro J, Lee Y, Carey RE, de Pamphilis C, Cosgrove DJ (2005) Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family. Plant J 44:409–419

    PubMed  CAS  Google Scholar 

  • Sangwanangkul P, Paull RE (2005) The role of hexose transporter in sugar accumulation of papaya fruit during maturation and ripening. Acta Hortic 740:313–316

    Google Scholar 

  • Schaller GE, Kieber JJ (2002) Ethylene. In: Somerville C, Meyerowitz E (eds) The Arabidopsis Book. American Society of Plant Biologists, Rockville

    Google Scholar 

  • Schranz ME, Mitchell-Olds T (2006) Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell 18:1152–1165

    PubMed  CAS  Google Scholar 

  • Schuler MA (2011) P450s in plant–insect interactions. Biochem Biophys Acta 1814:36–45

    Google Scholar 

  • Sheldon CC, Hills MJ, Lister C, Dean C, Dennis ES (2008) Peacock WJ Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization. Proc Natl Acad Sci U S A 105:2214–2219

    PubMed  CAS  Google Scholar 

  • Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci U S A 97:3753–3758

    PubMed  CAS  Google Scholar 

  • Seigler DS, Pauli GF, Nahrstedt A, Leen R (2002) Cyanogenic allosides and glucosides from Passiflora edulis and Carica papaya. Phytochem 69:873–882

    Google Scholar 

  • Stebbins G (1966) Chromosomal variation and evolution; polyploidy and chromosome size and number shed light on evolutionary processes in higher plants. Science 152:1463–1469

    PubMed  CAS  Google Scholar 

  • Steffen JG, Kang IH, Portereiko MF, Lloyd A, Drews GN (2008) AGL61 interacts with AGL80 and is required for central cell development in Arabidopsis. Plant Physiol 148:259–268

    PubMed  CAS  Google Scholar 

  • Stepanova AN, Alonso JM (2005) Ethylene signaling pathway. Sci STKE 276:cm3. doi:10.1126/stke.2762005cm3

  • Storey WB (1969) Papaya. In: Ferwerda FP, Wit F (eds) Outlines of perennial crop breeding in the tropics. Veenman Zoen, Wageningen, pp 389–408

    Google Scholar 

  • Storey WB (1938) Segregations of sex types in Solo papaya and their application to the selections of seed. Proc Am Soc Hort Sci 35:83–85

    Google Scholar 

  • Suzuki JY, Tripathi S, Fermín GA, Jan FJ, Hou S, Saw JH, Ackerman CM, Yu Q, Schatz MC, Pitz KY et al (2008) Characterization of insertion sites in Rainbow papaya, the first commercialized transgenic fruit crop. Trop Plant Biol 1:293–309

    CAS  Google Scholar 

  • Tan SC, Lam PF (1985) Effect of gamma irradiation on PAL activity and phenolic compounds in papaya (Carica papaya L.) and mango (Mangifera indica L.) fruits. ASEAN Food J 1:134–136

    CAS  Google Scholar 

  • Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008a) Synteny and collinearity in plant genomes. Science 320:486–488

    PubMed  CAS  Google Scholar 

  • Tang H, Wang X, Bowers JE, Ming R, Alam M, Paterson AH (2008b) Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res 18:1944–1954

    PubMed  CAS  Google Scholar 

  • Thumdee S, Manenoi A, Chen NJ, Paull RE (2010) Papaya fruit softening: role of hydrolases. Trop Plant Biol 3:98–109

    CAS  Google Scholar 

  • Trevaskis B, Tadege M, Hemming MN, Peacock WJ, Dennis ES, Sheldon C (2007) Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley. Plant Physiol 143:225–235

    PubMed  CAS  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, de Peer YV, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    PubMed  CAS  Google Scholar 

  • USDA (2004) USDA National Nutrient Database for Standard Reference, Release 17. Papayas, raw: Measure 3 (Whole papaya, edible portion). http://www.nal.usda.gov/fnic/foodcomp/Data/SR17/reports/sr17fg09.pdf. Accessed 1 Sep 2010

  • van der Biezen EA, Jones JD (1998) Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 23:454–456

    PubMed  Google Scholar 

  • Vyskot B, Hobza R (2004) Gender in plants: sex chromosomes are emerging from the fog. Trends Genet 20:432–438

    PubMed  CAS  Google Scholar 

  • Wai CM, Yu QY, Moore PH, Paull RE, Ming R (2010) Development of chromosome-specific cytogenetic markers and merging of linkage fragments in papaya. Trop Plant Biol 3:171–181

    Google Scholar 

  • Wang X, Shi X, Hao BL, Ge S, Luo J (2005) Duplication and DNA segmental loss in rice genome and their implications for diploidization. New Phytol 165:937–946

    PubMed  CAS  Google Scholar 

  • Watson B (1997) Agronomy/Agroclimatology notes for the production of papaya. Min Agric, Forests Fisheries Meterol, Australia

  • Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J Biol Chem 275:14659–14666

    PubMed  CAS  Google Scholar 

  • Wroblewski T, Piskurewicz U, Tomczak A, Ochoa O, Michelmore RW (2007) Silencing of the major family of NBS-LRR-encoding genes in lettuce results in the loss of multiple resistance specificities. Plant J 51:803–818

    PubMed  CAS  Google Scholar 

  • Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–120

    PubMed  CAS  Google Scholar 

  • Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologis A (2003) Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem 278:49102–49112

    PubMed  CAS  Google Scholar 

  • Yampolsky C, Yampolsky H (1922) Distribution of sex forms in the phanerogamic flora. Bibl Genet 3:1–62

    Google Scholar 

  • Yogeeswaran K, Frary A, York TL, Amenta A, Lesser AH, Nasrallah JB, Tanksley SD, Nasrallah ME (2005) Comparative genome analyses of Arabidopsis spp.: inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Res 15:505–515

    PubMed  CAS  Google Scholar 

  • Yu Q, Tong E, Skelton RL, Bowers JE, Jones MR, Murray JE, Hou S, Guan P, Acob RA, Luo MC, Moore PH, Alam M, Paterson AH, Ming R (2009) A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genomics 10:371

    PubMed  Google Scholar 

  • Yu Q, Steiger D, Kramer EM, Moore PH, Ming R (2008) Floral MADS-box genes in trioecious papaya: characterization of AG and AP1 subfamily genes revealed a sex-type-specific gene. Trop Plant Biol 1:97–107

    CAS  Google Scholar 

  • Yu QY, Hou SB, Hobza R, Feltus FA, Wang X, Jin WW, Skelton RL, Blas A, Lemke C, Saw JH, Moore PH, Alam M, Jiang JM, Paterson AH, Vyskot B, Ming R (2007) Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Mol Genet Genomics 278:177–185

    PubMed  CAS  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409

    PubMed  CAS  Google Scholar 

  • Zhang W, Wang X, Yu Q, Ming R, Jiang J (2008) DNA methylation and heterochromatinization in the male specific region of the primitive Y chromosome of papaya. Genome Res 18:1938–1943

    PubMed  CAS  Google Scholar 

  • Zhang WL, Wai CM, Ming R, Yu QY, Jiang JM (2010) Integration of genetic and cytological maps and development of a pachytene chromosome-based karyotype in papaya. Trop Plant Biol 3:166–170

    Google Scholar 

  • Zhou L, Chen CC, Ming R, Christopher DA, Paull RE (2003) Apoplastic invertase and its enhanced expression and post-translational control during papaya fruit maturation and ripening. J Amer Soc Hortic Sci 128:628–635

    CAS  Google Scholar 

  • Zhou LL, Paull RE (2001) Sucrose metabolism during papaya (Carica papaya) fruit growth and ripening. J Amer Soc Hortic Sci 126:351–357

    CAS  Google Scholar 

  • Zobell O, Faigl W, Saedler H, Munster T (2010) MIKC* MADS-box proteins: con-served regulators of the gametophytic generation of land plants. Mol Biol Evol 27:1201–1211

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Fanchang Zeng for assistance. This work is partly supported by a grant from the National Science Foundation (NSF) (award no. DBI-0922545).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Ming.

Additional information

Communicated by A. Abbott

A contribution to the Special Issue ‘‘The genomes of the giants: a walk through the forest of tree genomes’’

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ming, R., Yu, Q., Moore, P.H. et al. Genome of papaya, a fast growing tropical fruit tree. Tree Genetics & Genomes 8, 445–462 (2012). https://doi.org/10.1007/s11295-012-0490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0490-y

Keywords

Navigation