Skip to main content
Log in

Effect of MoS2 and WS2 Nanotubes on Nanofriction and Wear Reduction in Dry and Liquid Environments

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Nano-objects in dry and liquid conditions have shown reductions in friction and wear on the macroscale. Studies in low viscosity liquids with nanoparticles and nanotubes made of lubricating materials such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are limited. In this research, MoS2 and WS2 nanotubes with spherical gold (Au) nano-objects as a control are studied on the nanoscale under dry and low viscosity liquid environments for their effect on friction and wear reduction. Atomic forces microscopy (AFM) experiments on the nanoscale are performed in single-nano-object contact with an AFM tip, where nano-objects are laterally manipulated and multiple nano-object contact with a tip attached to a glass sphere sliding over several nano-objects. Wear tests were performed on the nanoscale by means of AFM as well as on the macroscale using a ball-on-flat tribometer to relate friction and wear reduction on both scales. Results indicate that nano-objects such as MoS2 and WS2 nanotubes contribute to friction and wear reduction due to the reduced contact area and the possible rolling and sliding on the nanoscale. On the macroscale, reductions in friction and wear occur due to possible exfoliation of outer layers in addition to other mechanisms just mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hu, H.S., Dong, J.X., Chen, G.X.: Study on antiwear and reducing friction additive of nanometer ferric oxide. Tribol. Int. 31, 355–360 (1998)

    Article  CAS  Google Scholar 

  2. Cizaire, L., Vacher, B., Mogne, T., Le Martin, J.M., Rapoport, L., Margolin, A., Tenne, R.: Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. Surf. Coat. Technol. 160, 282–287 (2002)

    Article  CAS  Google Scholar 

  3. Greenberg, R., Halperin, G., Etsion, I., Tenne, R.: The effect of WS2 nanoparticles on friction reduction in various lubrication regimes. Tribol. Lett. 17, 179–186 (2004)

    Article  CAS  Google Scholar 

  4. Joly-Pottuz, L., Dassenoy, F., Belin, M., Vacher, B., Martin, J.M., Fleischer, N.: Ultralow-friction and wear properties of IF-WS2 under boundary lubrication. Tribol. Lett. 18, 477–485 (2005)

    Article  CAS  Google Scholar 

  5. Rapoport, L., Nepomnyashchy, O., Lapsker, I., Verdyan, A., Soifer, Y., Popovitz-Biro, R., Tenne, R.: Friction and wear of fullerene-like WS2 under severe contact conditions: friction of ceramic materials. Tribol. Lett. 19, 143–149 (2005)

    Article  CAS  Google Scholar 

  6. Fu, X., Zhou, X., Shi, H., Wu, D., Hu, Z.: Investigation of the tribological properties of surfactant-modified MoS2 microsized spheres in base oil 500 SN. ASME J. Tribol. 129, 913–919 (2007)

    Article  CAS  Google Scholar 

  7. St. Dennis, J.E., Jin, K., John, V.T., Pesika, N.S.: Carbon microspheres as ball bearings in aqueous-based lubrication. ACS Appl. Mater. Interfaces 3, 2215–2218 (2011)

    Article  CAS  Google Scholar 

  8. Kalin, M., Kogovšek, J., Remškar, M.: Mechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additives. Wear 280–281, 36–45 (2012)

    Article  Google Scholar 

  9. Maharaj, D., Bhushan, B.: Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments. Belstein J. Nanotechnol. 3, 759–772 (2012)

    Google Scholar 

  10. Akbulut, M., Belman, N., Golan, Y., Israelachvili, J.: Frictional properties of confined nanorods. Adv. Mater. 18, 2589–2592 (2006)

    Article  CAS  Google Scholar 

  11. Ritter, C., Heyde, M., Stegemann, B., Schwarz, U.D., Rademann, K.: Controlled translational manipulation of small latex spheres by dynamic force microscopy. Langmuir 18, 7798–7803 (2002)

    Article  CAS  Google Scholar 

  12. Ritter, C., Heyde, M., Stegemann, B., Rademann, K., Schwarz, U.D.: Contact-area dependence of frictional forces: moving adsorbed antimony nanoparticles. Phys. Rev. B 71, 085405 (2005)

    Article  Google Scholar 

  13. Dietzel, D., Monninghoff, G.S., Jansen, L., Fuchs, H., Ritter, C., Scharwz, U.D., Schirmeisen, A.: Interfacial friction obtained by lateral manipulation of nanoparticles using atomic force microscopy techniques. J. Appl. Phys. 102, 084306 (2007)

    Article  Google Scholar 

  14. Mougin, K., Gnecco, E., Rao, A., Cuberes, M.T., Jayaraman, S., McFarland, E.W., Haidara, H., Meyer, E.: Manipulation of gold nanoparticles: influence of surface chemistry, temperature, and environment (vacuum versus ambient atmosphere). Langmuir 24, 1577–1581 (2008)

    Article  CAS  Google Scholar 

  15. Palacio, M., Bhushan, B.: A nanoscale friction investigation during manipulation of nanoparticles in controlled environments. Nanotechnology 19, 315710 (2008)

    Article  Google Scholar 

  16. Lahouij, I., Dassenoy, F., de Knoop, L., Martin, J.-M., Vacher, B.: In situ TEM observation of the behavior of an individual fullerene-like MoS2 nanoparticle in a dynamic contact. Tribol. Lett. 42, 133–140 (2011)

    Article  CAS  Google Scholar 

  17. Tevet, O., Von-Huth, P., Popovitz-Biro, R., Rosentsveig, R., Wagner, H.D., Tenne, R.: Friction mechanism of individual multilayered nanoparticles. Proc. Natl. Acad. Sci. USA 108, 19901–19906 (2011)

    Article  CAS  Google Scholar 

  18. Hui, X., Regnier, S.: High-efficiency automated nanomanipulation with parallel imaging/manipulation force microscopy. IEEE Trans. Nanotechnol. 11, 21–33 (2012)

    Article  Google Scholar 

  19. Duncan, R.: The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2, 347–360 (2003)

    Article  CAS  Google Scholar 

  20. Ferrari, M.: Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005)

    Article  CAS  Google Scholar 

  21. Panyala, N.R., Pena-Mendez, E.M., Havel, J.: Gold and nano-gold in medicine: overview, toxicology and perspectives. J. Appl. Biomed. 7, 75–91 (2009)

    CAS  Google Scholar 

  22. Berlin, J.M., Yu, J., Lu, W., Walsh, E.E., Zhang, L., Zhang, P., Chen, W., Kan, A.T., Wong, M.S., Tomson, M.B., Tour, J.M.: Engineered nanoparticles for hydrocarbon detection in oil-field rocks. Energy Environ. Sci. 4, 505–509 (2011)

    Article  CAS  Google Scholar 

  23. Matteo, C., Candido, P., Vera, R., Francesca, V.: Current and future nanotech applications in the oil industry. Am. J. Appl. Sci. 9, 784–793 (2012)

    CAS  Google Scholar 

  24. Ryoo, S., Rahmani, A.R., Yoon, K.Y., Prodanovic, M., Kotsmar, C., Milner, T.E., Huh, C.: Theoretical and experimental investigation of the motion of multiphase fluids containing paramagnetic nanoparticles in porous media. J. Petrol. Sci. Eng. 81, 129–144 (2012)

    Article  CAS  Google Scholar 

  25. Thanikaivelan, P., Narayanan, N. T., Pradhan, B. K., Ajayan, P. M.: Collagen based magnetic nanocomposites for oil removal applications. Sci. Rep. 2, (2012). doi:10.1038/srep00230

  26. Bhushan, B. (ed.): Springer Handbook of Nanotechnology, 3rd edn. Springer, Heidelberg (2010)

    Google Scholar 

  27. Bhushan, B. (ed.): Nanotribology and Nanomechanics, I and II, 3rd edn. Springer, Heidelberg (2011)

    Google Scholar 

  28. Bhushan, B., Gupta, B.K.: Handbook of Tribology: Materials, Coatings, and Surface Treatments. McGraw-Hill, New York (1991)

    Google Scholar 

  29. Bhushan, B.: Introduction to Tribology. Wiley, CRC Press, New York (2002)

    Google Scholar 

  30. Rapoport, L., Lvovsky, M., Lapsker, I., Leshinsky, V., Volovik, Y., Feldman, Y., Zak, A., Tenne, R.: Slow release of fullerene-like WS2 nanoparticles as a superior solid lubrication mechanism in composite matrices. Adv. Eng. Mater. 3, 71–75 (2001)

    Article  CAS  Google Scholar 

  31. Bhushan, B.: Modern Tribology Handbook, Vol. 1—Principles of Tribology; Vol. 2—Materials, Coatings, and Industrial Applications. CRC Press Inc., Boca Raton (2001)

    Google Scholar 

  32. Nalam, P., Clasohm, J., Mashaghi, A., Spencer, N.: Macrotribological studies of poly(l-lysine)-graft-poly (ethylene glycol) in aqueous glycerol mixtures. Tribol. Lett. 37, 541–552 (2010)

    Article  CAS  Google Scholar 

  33. Resch, R., Lewis, D., Meltzer, S., Montoya, N., Koel, B.E., Madhukar, A., Requicha, A.A., Will, P.: Manipulation of gold nanoparticles in liquid environments using scanning force microscopy. Ultramicroscopy 82, 135–139 (2000)

    Article  CAS  Google Scholar 

  34. Burton, Z., Bhushan, B.: Hydrophobicity, adhesion and friction properties of nanopatterned polymers and scale dependence for MEMS/NEMS. Nano Lett. 5, 1607–1613 (2005)

    Article  CAS  Google Scholar 

  35. Nanopartz.com.: Accurate spherical gold nanoparticles. http://www.nanopartz.com/bare_spherical_gold_nanoparticles.asp. (2012). Accessed 17 Oct 2012

  36. Rothschild, A., Sloan, J., Tenne, R.: The growth of WS2 nanotubes phases. J. Am. Chem. Soc. 122, 5169–5179 (2000)

    Article  CAS  Google Scholar 

  37. Zak, A., Sallacan-Ecker, L., Margolin, A., Feldman, Y., Popovitz-Biro, R., Albu-Yaron, A., Genut, M., Tenne, R.: Scaling up of the WS2 nanotubes synthesis. Fullerenes Nanotubes Carbon Nanostruct. 19, 18–26 (2010)

    Article  Google Scholar 

  38. Remškar, M., Mrzel, A., Viršek, M., Jesih, A.: Inorganic nanotubes as nanoreactors: the first MoS2 nanopods. Adv. Mater. 19, 4276–4278 (2007)

    Article  Google Scholar 

  39. Remskar, M., Mrzel, A., Virsek, M., Godec, M., Krause, M., Kolitsch, A., Singh, A., Seabaugh, A.: The MoS2 nanotubes with defect-controlled electric properties. Nanoscale Res. Lett. 6, 26 (2011)

    Google Scholar 

  40. Lide, D.R. (ed.): CRC Handbook of Chemistry and Physics, 90th edn. CRC Press, Boca Raton (2009)

    Google Scholar 

  41. Ruan, J., Bhushan, B.: Atomic-scale friction measurements using friction force microscopy: part I—general principles and new measurement techniques. ASME J. Tribol. 116, 378–388 (1994)

    Article  CAS  Google Scholar 

  42. Falvo, M.R., Taylor Ii, R.M., Helser, A., Chi, V., Brooks Jr, F.P., Washburn, S., Superfine, R.: Nanometre-scale rolling and sliding of carbon nanotubes. Nature 397, 236–238 (1999)

    Article  CAS  Google Scholar 

  43. Cayre, O.J., Paunov, V.N.: Contact angles of colloid silica and gold particles at air–water and oil–water interfaces determined with the gel trapping technique. Langmuir 20, 9594–9599 (2004)

    Article  CAS  Google Scholar 

  44. Fuerstenau, M.C., Han, K.N. (eds.).: Principles of Mineral Processing, Society for Mining, Metallurgy, and Exploration (SME) (2003)

  45. Zhang, S., Zeng, X.T., Tang, Z.G., Tan, M.J.: Exploring the antisticking properties of solid lubricant thin films in transfer molding. Int. J. Mod. Phys. B 16, 1080–1085 (2002)

    Article  CAS  Google Scholar 

  46. Bhushan, B., Sundararajan, S.: Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy. Act. Mater. 46, 3793–3804 (1998)

    Article  CAS  Google Scholar 

  47. Pope, L.E., Panitz, J.K.G.: The effects of hertzian stress and test atmosphere on the friction coefficients of MoS2 coatings. Surf. Coat. Technol. 36, 341–350 (1988)

    Article  CAS  Google Scholar 

  48. Prasad, S.V., Zabinski, J.S.: Tribology of tungsten disulfide (WS2)–characterization of wear–induced transfer films. J. Mater. Sci. Lett. 12, 1413–1415 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of this research was provided by a grant from the National Science Foundation, Arlington, VA (Grant # CMMI-1000108). We are especially grateful to Prof. Maja Remskar (Josef Stefan Institute, Slovenia) for providing MoS2 nanotubes and Prof. Reshef Tenne (Weizmann Institute, Israel) for providing WS2 nanotubes which made this research possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maharaj, D., Bhushan, B. Effect of MoS2 and WS2 Nanotubes on Nanofriction and Wear Reduction in Dry and Liquid Environments. Tribol Lett 49, 323–339 (2013). https://doi.org/10.1007/s11249-012-0071-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-0071-0

Keywords

Navigation