Skip to main content
Log in

Coloring genetically modified soybean grains with anthocyanins by suppression of the proanthocyanidin genes ANR1 and ANR2

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Detection and quantification of the levels of adventitious presence of genetically modified (GM) soybeans in non-GM grain shipments currently requires sophisticated tests that can have issues with their reproducibility. We show here that pigment biosynthesis in the soybean seed coat can be manipulated to provide a distinct color that would enable the simple visible detection of the GM soybean grain. We observed that a distinct red-brown grain color could be engineered by the simultaneous suppression of two proanthocyanidin (PA) genes, ANTHOCYANIDIN REDUCTASE1 (ANR1) and ANR2. Multiple reaction monitoring by liquid chromatography tandem mass spectrometry was used to quantify differentially accumulated seed coat metabolites, and revealed the redirection of metabolic flux into the anthocyanin pigment pathway and unexpectedly the flavonol-3-O-glucoside pathway. The upregulations of anthocyanin isogenes (DFR1 and GST26) and the anthocyanin/flavonol-3-O-glycosyltransferase (UGT78K2) were identified by quantitative RT-PCR to be endogenous feedback and feedforward responses to overaccumulation of upstream flavonoid intermediates resulting from ANR1 and ANR2 suppressions. These results suggested the transcription of flavonoid genes to be a key component of the mechanism responsible for the redirection of metabolite flux. This report identifies the suppression of PA genes to be a novel approach for engineering pigmentation in soybean grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albert S, Delseny M, Devic M (1997) BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. Plant J 11:289–299

    Article  PubMed  CAS  Google Scholar 

  • Basaran P, Rodriguez-Cerezo E (2008) Plant molecular farming: opportunities and challenges. Crit Rev Biotechnol 28:153–172

    Article  PubMed  Google Scholar 

  • Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19:148–162

    Article  PubMed  CAS  Google Scholar 

  • Blount JW, Korth KL, Masoud SA, Rasmussen S, Lamb C, Dixon RA (2000) Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiol 122:107–116

    Article  PubMed  CAS  Google Scholar 

  • Bolwell G, Cramer C, Lamb C, Schuch W, Dixon R (1986) l-Phenylalanine ammonia-lyase from Phaseolus vulgaris: modulation of the levels of active enzyme by trans-cinnamic acid. Planta 149:97–107

    Article  Google Scholar 

  • Demeke T, Perry D, Scowcroft W (2006) Adventitious presence of GMOs: scientific overview for Canadian grains. Can J Plant Sci 86:1–23

    Article  Google Scholar 

  • Devic M, Guilleminot J, Debeaujon I, Bechtold N, Bensaude E, Koornneef M, Pelletier G, Delseny M (1999) The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. Plant J 19:387–398

    Article  PubMed  CAS  Google Scholar 

  • Finer JJ, McMullen MD (1991) Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell Dev Biol Plant 27:175–182

    Article  Google Scholar 

  • Geekiyanage S (2009) Potential of VlmybAl-2 as a candidate marker for visual identification of transgenic plants: induced anthocyanin production in Arabidopsis and tobacco. Trop Agric Res Ext 12:35–41

    Google Scholar 

  • Hahlbrock K, Knobloch K, Kreuzaler F, Potts J, Wellmann E (1976) Coordinated induction and subsequent activity changes of two groups of metabolically interrelated enzymes. Light-induced synthesis of flavonoid glycosides in cell suspension cultures of Petroselinum hortense. Eur J Biochem 61:199–206

    Article  PubMed  CAS  Google Scholar 

  • Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B (2005) Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol 57:155–171

    Article  PubMed  CAS  Google Scholar 

  • Holton TA (1995) Modification of flower colour via manipulation of P450 gene expression in transgenic plants. Drug Metabol Drug Interact 12:359–368

    Article  PubMed  CAS  Google Scholar 

  • Holton TA, Brugliera F, Tanaka Y (1993) Cloning and expression of flavonol synthase from Petunia hybrida. Plant J 4:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Karg SR, Kallio PT (2009) The production of biopharmaceuticals in plant systems. Biotechnol Adv 27:879–894

    Article  PubMed  CAS  Google Scholar 

  • Kovinich N, Saleem A, Arnason JT, Miki B (2010) Functional characterization of a UDP-glucose:flavonoid 3-O-glucosyltransferase from the seed coat of black soybean (Glycine max (L.) Merr.). Phytochemistry 71:1253–1263

    Article  PubMed  CAS  Google Scholar 

  • Kovinich N, Arnason JT, De Luca V, Miki B (2011a) Coloring soybeans with anthocyanins? In: Gang DR (ed) Recent advances in phytochemistry. Springer, New York, pp 47–57

    Google Scholar 

  • Kovinich N, Saleem A, Arnason JT, Miki B (2011b) Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats enabling the identification of pigment isogenes. BMC Genomics 12:381

    Article  PubMed  CAS  Google Scholar 

  • Kovinich N, Saleem A, Arnason JT, Miki B (Submitted) Identification of two anthocyanidin reductase genes from the seed coat of brown soybean and three red-brown soybean accessions that have reduced ANTHOCYANIDIN REDUCTASE1 mRNA, activity, and seed coat proanthocyanidin amounts. J Agric Food Chem

  • Krueger R, Le Buanec B (2008) Action needed to harmonize regulation of low-level presence of biotech traits. Nat Biotechnol 26:161–162

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Yoon H, Paik YS, Liu JR, Chung W-I, Choi G (2005) Reciprocal regulation of Arabidopsis UGT78D2 and BANYULS is critical for regulation of the metabolic flux of anthocyanidins to condensed tannins in developing seed coats. J Plant Biol 48:356–370

    Article  CAS  Google Scholar 

  • Lemaux PG (2008) Genetically engineered plants and foods: a scientist’s analysis of the issues (part I). Annu Rev Plant Biol 59:771–812

    Article  PubMed  CAS  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  PubMed  CAS  Google Scholar 

  • Loake GJ, Choudhary AD, Harrison MJ, Mavandad M, Lamb CJ, Dixon RA (1991) Phenylpropanoid pathway intermediates regulate transient expression of a chalcone synthase gene promoter. Plant Cell 3:829–840

    PubMed  CAS  Google Scholar 

  • McCallum JA, Walker JRL (1990) Proanthocyanidins in wheat bran. Cereal Chem 67:282–285

    CAS  Google Scholar 

  • Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330:677–678

    Article  PubMed  CAS  Google Scholar 

  • Miki D, Shimamoto K (2004) Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol 45:490–495

    Article  PubMed  CAS  Google Scholar 

  • Mol J, Grotewold E, Koesa R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212–217

    Article  Google Scholar 

  • Morisset D, Demsar T, Gruden K, Vojvoda J, Stebih D, Zel J (2009) Detection of genetically modified organisms-closing the gaps. Nat Biotechnol 27:700–701

    Article  PubMed  CAS  Google Scholar 

  • Naczk M, Nichols T, Pink D, Sosulski F (1994) Condensed tannins in Canola Hulls. J Agric Food Chem 42:2196–2200

    Article  CAS  Google Scholar 

  • Nagamatsu A, Masuta C, Matsuura H, Kitamura K, Abe J, Kanazawa A (2009) Down-regulation of flavonoid 3′-hydroxylase gene expression by virus-induced gene silencing in soybean reveals the presence of a threshold mRNA level associated with pigmentation in pubescence. J Plant Physiol 166:32–39

    Article  PubMed  CAS  Google Scholar 

  • Nakatsuka T, Abe Y, Kakizaki Y, Yamamura S, Nishihara M (2007) Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Rep 26:1951–1959

    Article  PubMed  CAS  Google Scholar 

  • Nishihara M, Nakatsuka T (2011) Genetic engineering of flavonoid pigments to modify flower color in floricultural plants. Biotechnol Lett 33:433–441

    Article  PubMed  CAS  Google Scholar 

  • Pelletier MK, Murrell JR, Shirley BW (1997) Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis. Further evidence for differential regulation of “early” and “late” genes. Plant Physiol 113:1437–1445

    Article  PubMed  CAS  Google Scholar 

  • Ramessar K, Capell T, Twyman RM, Christou P (2010) Going to ridiculous lengths—European coexistence regulations for GM crops. Nat Biotechnol 28:133–136

    Article  PubMed  CAS  Google Scholar 

  • Routaboul JM, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L (2006) Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 224:96–107

    Article  PubMed  CAS  Google Scholar 

  • Shen L, Petolino J (2006) Pigmented maize seed via tissue-specific expression of anthocyanin pathway gene transcription factors. Mol Breed 18:57–67

    Article  CAS  Google Scholar 

  • Smyth S, McHughen A (2008) Regulating innovative crop technologies in Canada: the case of regulating genetically modified crops. Plant Biotechnol J 6:213–225

    Article  PubMed  Google Scholar 

  • Stewart CN Jr (2005) Monitoring the presence and expression of transgenes in living plants. Trends Plant Sci 10:390–396

    Article  PubMed  CAS  Google Scholar 

  • Stewart CN Jr (2006) Go with the glow: fluorescent proteins to light transgenic organisms. Trends Biotechnol 24:155–162

    Article  PubMed  CAS  Google Scholar 

  • Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50:660–677

    Article  PubMed  CAS  Google Scholar 

  • Stracke R, De Vos RC, Bartelniewoehner L, Ishihara H, Sagasser M, Martens S, Weisshaar B (2009) Metabolomic and genetic analyses of flavonol synthesis in Arabidopsis thaliana support the in vivo involvement of leucoanthocyanidin dioxygenase. Planta 229:427–445

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto T, Kawasaki T, Kato T, Whittier RF, Shibata D, Kawamura Y (1992) cDNA sequence and expression of a phosphoenolpyruvate carboxylase gene from soybean. Plant Mol Biol 20:743–747

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Tsuda S, Kusumi T (1998) Metabolic engineering to modify flower color. Plant Cell Physiol 39:1119–1126

    Article  CAS  Google Scholar 

  • Tsuda S, Fukui Y, Nakamura N, Katsumoto Y, Yonekura-Sakakibara K, Fukuchi-Mizutani M, Ohira K, Ueyama Y, Ohkawa H, Holton TA, Kusumi T, Tanaka Y (2004) Flower color modification of Petunia hybrida commercial varieties by metabolic engineering. Plant Biotechnol 21:377–386

    Article  CAS  Google Scholar 

  • Tuteja JH, Clough SJ, Chan WC, Vodkin LO (2004) Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell 16:819–835

    Article  PubMed  CAS  Google Scholar 

  • Venglat P, Xiang D, Qiu S, Stone SL, Tibiche S, Cram D, Alting-Mees M, Nowak J, Cloutier S, Deyholos M, Bekkaoui F, Sharpe A, Wang E, Rowland G, Selvaraj G, Datla R (2011) Gene expression analysis of flax seed development. BMC Plant Biol 11:74

    Article  PubMed  CAS  Google Scholar 

  • Wang C-S, Vodkin LO (1994) Extraction of RNA from tissues containing high levels of procyanidins that bind RNA. Plant Mol Biol Rep 12:132–145

    Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  PubMed  CAS  Google Scholar 

  • Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399

    Article  PubMed  CAS  Google Scholar 

  • Yu O, Shi J, Hession AO, Maxwell CA, McGonigle B, Odell JT (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63:753–763

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Dixon RA (2010) The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci 15:72–80

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Huhman D, Shadle G, He XZ, Sumner LW, Tang Y, Dixon RA (2011) MATE2 mediates vacuolar sequestration of flavonoid glycosides and Glycoside Malonates in Medicago truncatula. Plant Cell 23:1536–1555

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Dr. Vincenzo De Luca for the fruitful conversations, Dr. Ko Shimamoto for providing the pANDA35HK vector and Carla Schmidt for assistance with soybean transformation. This project was funded by the A-base (project inventory 126) from Agriculture and Agri-Food Canada to BM and DB, and NSERC Discovery Grants to BM and JTA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nik Kovinich.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovinich, N., Saleem, A., Rintoul, T.L. et al. Coloring genetically modified soybean grains with anthocyanins by suppression of the proanthocyanidin genes ANR1 and ANR2 . Transgenic Res 21, 757–771 (2012). https://doi.org/10.1007/s11248-011-9566-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-011-9566-y

Keywords

Navigation