Skip to main content
Log in

Feral genetically modified herbicide tolerant oilseed rape from seed import spills: are concerns scientifically justified?

  • Review
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

One of the concerns surrounding the import (for food and feed uses or processing) of genetically modified herbicide tolerant (GMHT) oilseed rape is that, through seed spillage, the herbicide tolerance (HT) trait will escape into agricultural or semi-natural habitats, causing environmental or economic problems. Based on these concerns, three EU countries have invoked national safeguard clauses to ban the marketing of specific GMHT oilseed rape events on their territory. However, the scientific basis for the environmental and economic concerns posed by feral GMHT oilseed rape resulting from seed import spills is debatable. While oilseed rape has characteristics such as secondary dormancy and small seed size that enable it to persist and be redistributed in the landscape, the presence of ferals is not in itself an environmental or economic problem. Crucially, feral oilseed rape has not become invasive outside cultivated and ruderal habitats, and HT traits are not likely to result in increased invasiveness. Feral GMHT oilseed rape has the potential to introduce HT traits to volunteer weeds in agricultural fields, but would only be amplified if the herbicides to which HT volunteers are tolerant were used routinely in the field. However, this worst-case scenario is most unlikely, as seed import spills are mostly confined to port areas. Economic concerns revolve around the potential for feral GMHT oilseed rape to contribute to GM admixtures in non-GM crops. Since feral plants derived from cultivation (as distinct from import) occur at too low a frequency to affect the coexistence threshold of 0.9% in the EU, it can be concluded that feral GMHT plants resulting from seed import spills will have little relevance as a potential source of pollen or seed for GM admixture. This paper concludes that feral oilseed rape in Europe should not be routinely managed, and certainly not in semi-natural habitats, as the benefits of such action would not outweigh the negative effects of management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aono M, Wakiyama S, Nagatsu M, Nakajima N, Tamaoki M, Kubo A, Saji H (2006) Detection of feral transgenic oilseed rape with multiple-herbicide resistance in Japan. Environ Biosafety Res 5:77–87

    PubMed  CAS  Google Scholar 

  • Bagavathiannen MV, Van Acker RC (2008) Crop ferality: implications for novel trait confinement. Agric Ecosyst Environ 127:1–6

    Google Scholar 

  • Baker J, Preston C (2008) Canola (Brassica napus L.) seedbank declines rapidly in farmer-managed fields in South Australia. Aust J Agric Res 59:780–784

    Google Scholar 

  • Bartsch D (2008) National safeguard clauses (Art. 23/RL 2001/18)—the role of EFSA and National Biosafety Committees. J Consum Prot Food Safety 3(S2):63

    Google Scholar 

  • Beckie HJ, Hall LM (2008) Simple to complex: modelling crop pollen-mediated gene flow. Plant Sci 175:615–628

    CAS  Google Scholar 

  • Beckie HJ, Warwick SI (2010) Persistence of an oilseed rape transgene in the environment. Crop Prot 29:509–512

    CAS  Google Scholar 

  • Beckie HJ, Warwick SI, Nair H, Séguin-Swartz G (2003) Gene flow in commercial fields of herbicide-resistant canola (Brassica napus). Ecol Appl 13:1276–1294

    Google Scholar 

  • Beckie HJ, Séguin-Swartz G, Nair H, Warwick SI, Johnson E (2004) Multiple herbicide-resistant canola (Brassica napus) can be controlled by alternative herbicides. Weed Sci 52:152–157

    CAS  Google Scholar 

  • Beckie HJ, Hall LM, Simard M-J, Leeson JY, Willenborg CJ (2010) A framework for postrelease environmental monitoring of second-generation crops with novel traits. Crop Sci 50:1587–1604

    Google Scholar 

  • Begg GS, Hockaday S, Mcnicol JW, Askew M, Squire GR (2006) Modelling the persistence of volunteer oilseed rape (Brassica napus). Ecol Model 198:195–207

    CAS  Google Scholar 

  • Berben G (2008) Y-a-t-il des colzas transgéniques dans l’environnement Wallon? CRAW-info 18:3

    Google Scholar 

  • Berben G (2009) L’environnement de la région Wallonne comprend du colza transgénique. CRAW-info 24:3

    Google Scholar 

  • Bond JM, Mogg RJ, Squire GR, Johnstone C (2004) Microsatellite amplification in Brassica napus cultivars: cultivar variability and relationship to a long-term feral population. Euphytica 139:173–178

    CAS  Google Scholar 

  • CERA (2011) GM crop database. ILSI Research Foundation, Washington DC, http://cera-gmc.org/index.php?action=gm_crop_database

  • Charters YM, Robertson A, Squire GR (1999) Investigation of feral oilseed rape populations, genetically modified organisms research report (No. 12). Department of the Environment, Transport and the Regions, http://www.defra.gov.uk/environment/gm/research/reports.htm

  • Chèvre AM, Ammitzbøll H, Breckling B, Dietz-Pfeilstetter A, Eber F, Fargue A, Gomez-Campo C, Jenczewski E, Jørgensen R, Lavigne C, Meier M, den Nijs H, Pascher K, Seguin-Swartz G, Sweet J, Stewart N, Warwick S (2004) A review on interspecific gene flow from oilseed rape to wild relatives. In: den Nijs HCM, Bartsch D, Sweet J (eds) Introgression from genetically modified plants into wild relatives. CABI Publishing, New York, pp 235–251

    Google Scholar 

  • Chifflet R, Klein EK, Lavigne C, Le Féon V, Ricroch AE, Lecomte J, Vaissière BE (2011) Spatial scale of insect-mediated pollen dispersal in oilseed rape in an open agricultural landscape. J Appl Ecol. doi:10.1111/j.1365-2664.2010.01904.x

  • Christiansen T, Polak J (2009) Comitology between political decision-making and technocratic governance: regulating GMOs in the European Union. Eipascope Bull 1:5–11

    Google Scholar 

  • Claessen D, Gilligan CA, Lutman PJW, van den Bosch F (2005a) Which traits promote persistence of feral GM crops? Part 1: implications of environmental stochasticity. Oikos 110:20–29

    Google Scholar 

  • Claessen D, Gilligan CA, van den Bosch F (2005b) Which traits promote persistence of feral GM crops? Part 2: implications of metapopulation structure. Oikos 110:30–42

    Google Scholar 

  • Cook SK, Wynn SC, Clarke JH (2010) How valuable is glyphosate to UK agriculture and the environment? Outlooks Pest Manag 21:280–284

    Google Scholar 

  • Crawley MJ, Brown SL (1995) Seed limitation and the dynamics of feral oilseed rape on the M25 motorway. Proc R Soc B Biol Sci 259:49–54

    Google Scholar 

  • Crawley MJ, Brown SL (2004) Spatially structured population dynamics in feral oilseed rape. Proc R Soc B Biol Sci 271:1909–1916

    Google Scholar 

  • Crawley MJ, Hails RS, Rees M, Kohn D, Buxton J (1993) Ecology of transgenic oilseed rape in natural habitats. Nature 363:620–623

    Google Scholar 

  • Crawley MJ, Brown SL, Hails RS, Kohn DD, Rees M (2001) Transgenic crops in natural habitats. Nature 409:682–683

    PubMed  CAS  Google Scholar 

  • D’Hertefeldt T, Jørgensen RB, Pettersson LB (2008) Long-term persistence of GM oilseed rape in the seedbank. Biol Lett 4:314–317

    PubMed  Google Scholar 

  • Damgaard C, Kjaer C (2009) Competitive interactions and the effect of herbivory on Bt-Brassica napus, Brassica rapa and Lolium perenne. J Appl Ecol 46:1073–1079

    Google Scholar 

  • Damgaard C, Kjellsson G, Haldrup C (2007) Prediction of the combined effect of various GM contamination sources of seed: a case study of oilseed rape under Danish conditions. Acta Agr Scand B-S P 57:248–254

    Google Scholar 

  • Demeke T, Perry DJ, Scowcroft WR (2006) Adventitious presence of GMOs: scientific overview for Canadian grains. Can J Plant Sci 86:1–23

    Google Scholar 

  • Demont M, Devos Y (2008) Regulating coexistence of GM and non-GM crops without jeopardizing economic incentives. Trends Biotechnol 26:353–358

    PubMed  CAS  Google Scholar 

  • Devaux C, Lavigne C, Falentin-Guyomarc’h H, Vautrin S, Lecomte J, Klein EK (2005) High diversity of oilseed rape pollen clouds over an agro-ecosystem indicated long-distance dispersal. Mol Ecol 14:2269–2280

    PubMed  CAS  Google Scholar 

  • Devaux C, Lavigne C, Austerlitz F, Klein EK (2007) Modelling and estimating pollen movement in oilseed rape (Brassica napus) at the landscape scale using genetic markers. Mol Ecol 16:487–499

    PubMed  CAS  Google Scholar 

  • Devaux C, Klein EK, Lavigne C, Sausse C, Messéan A (2008) Environmental and landscape effects on cross-pollination rates observed at the long distance among French oilseed rape (Brassica napus) commercial fields. J Appl Ecol 45:803–812

    Google Scholar 

  • Deville A (2004) Suivi de terrain, expérimentations et modélisation: des approches complémentaires pour l’étude de l’impact des populations de colza hors-champ sur les flux de gènes au sein des agro-écosystèmes. PhD thesis, Université Paris XI, UFR Scientifique D’Orsay

  • Devos Y, Demont M, Sanvido O (2008a) Coexistence in the EU–return of the moratorium on GM crops? Nature Biotechnol 26:1223–1225

    CAS  Google Scholar 

  • Devos Y, Maeseele P, Reheul D, Van Speybroeck L, De Waele D (2008b) Ethics in the societal debate on genetically modified organisms: a (re)quest for Sense and Sensibility. J Agr Environ Ethic 21:29–61

    Google Scholar 

  • Devos Y, De Schrijver A, Reheul D (2009a) Quantifying the introgressive hybridisation propensity between transgenic oilseed rape and its wild/weedy relatives. Environ Monit Assess 149:303–322

    PubMed  CAS  Google Scholar 

  • Devos Y, Demont M, Dillen K, Reheul D, Kaiser M, Sanvido O (2009b) Coexistence of genetically modified (GM) and non-GM crops in the European Union. A review. Agron Sustain Dev 29:11–30

    Google Scholar 

  • Dietz-Pfeilstetter A, Zwerger P (2009) In-field frequencies and characteristics of oilseed rape with double herbicide resistance. Environ Biosafety Res 8:101–111

    PubMed  Google Scholar 

  • Dietz-Pfeilstetter A, Metge K, Schönfeld J, Zwerger P (2006) Assessment of transgene spread from oilseed rape by population dynamic and molecular analyses of feral oilseed rape. J Plant Dis Protect XX:39–47

    Google Scholar 

  • Eastham K, Sweet J (2002) Genetically modified organisms (GMOs): the significance of gene flow through pollen transfer. European Environment Agency, http://www.eea.europa.eu/publications/environmental_issue_report_2002_28

  • EC (2003a) Commission Recommendation of 23 July 2003 on guidelines for the development of national strategies and best practices to ensure the coexistence of genetically modified crops with conventional and organic farming. Off J Eur Comm L189:36–47

    Google Scholar 

  • EC (2003b) Regulation (EC) 1829/2003 of the European Parliament and of the Council of 22 September 2003 on genetically modified food and feed. Off J Eur Comm L268:1–23

    Google Scholar 

  • EC (2004) Directive 2004/35/EC of the European Parliament and of the Council of 21 April 2004 on environmental liability with regard to the prevention and remedying of environmental damage. Off J Eur Comm L143:56–75

    Google Scholar 

  • EC (2005) Commission Recommendation of 16 August 2005 concerning measures to be taken by the consent holder to prevent any damage to health and the environment in the event of the accidental spillage of an oilseed rape (Brassica napus L., GT73 line–MON-00073-7) genetically modified for tolerance to the herbicide glyphosate. Off J Eur Comm L228:19–20

    Google Scholar 

  • EC (2010) Commission Recommendation of 13 July 2010 on guidelines for the development of national co-existence measures to avoid the unintended presence of GMOs in conventional and organic crops, http://ec.europa.eu/food/food/biotechnology/docs/new_recommendation_en.pdf

  • EFSA (2004a) Opinion of the Scientific Panel on Genetically Modified Organisms on a request from the Commission related to the notification (Reference C/NL/98/11) for the placing on the market of herbicide-tolerant oilseed rape GT73, for import and processing, under Part C of Directive 2001/18/EC from Monsanto. EFSA J 29:1–19, http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1178620772413.htm

  • EFSA (2004b) Opinion of the scientific panel on genetically modified organisms on a request from the Commission related to the Greek invoke of Article 23 of Directive 2001/18/EC. EFSA J 79:1–8, http://www.efsa.europa.eu/en/efsajournal/pub/79.htm

  • EFSA (2005) Opinion of the Scientific Panel on Genetically Modified Organisms on a request from the Commission related to the application (Reference C/BE/96/01) for the placing on the market of glufosinate-tolerant hybrid oilseed rape Ms8 × Rf3, derived from genetically modified parental lines (Ms8, Rf3), for import and processing for feed and industrial uses, under Part C of Directive 2001/18/EC from Bayer CropScience. EFSA J 281:1–23, http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1178620770114.htm

  • EFSA (2006) Opinion of the Scientific Panel on Genetically Modified Organisms related to genetically modified crops (Bt176 maize, MON810 maize, T25 maize, Topas 19/2 oilseed rape and Ms1xRf1 oilseed rape) subject to safeguard clauses invoked according to Article 16 of Directive 90/220/EEC. EFSA J 338:1-15, http://www.efsa.europa.eu/en/efsajournal/pub/338.htm

  • EFSA (2008) Opinion of the Scientific Panel on Genetically Modified Organisms on an application (Reference EFSA-GMO-UK-2005-25) for the placing on the market of glufosinate-tolerant oilseed rape T45 for food and feed uses, import and processing and renewal of the authorization of oilseed rapt T45 as existing products, both under Regulation (EC) 1829/2003 from Bayer CropScience. EFSA J 635:1–22, http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1178690393760.htm

  • EFSA (2009a) Scientific Opinion of the Panel on Genetically Modified Organisms on a request from the European Commission related to the safeguard clause invoked by Austria on oilseed rape MS8, RF3 and MS8×RF3 according to Article 23 of Directive 2001/18/EC. EFSA J 1153:1–16, http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1211902598000.htm

  • EFSA (2009b) Scientific opinion of the panel on genetically modified organisms on a request from the European Commission related to the safeguard clause invoked by Austria on oilseed rape GT73 according to Article 23 of Directive 2001/18/EC. EFSA J 1151:1–16, http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1211902599714.htm

  • EFSA (2010) Guidance on the environmental risk assessment of genetically modified plants. EFSA J 1879:1–111, http://www.efsa.europa.eu/en/efsajournal/doc/1879.pdf

    Google Scholar 

  • Elling B, Neuffer B, Bleeker W (2009) Sources of genetic diversity in feral oilseed rape (Brassica napus) populations. Basic App Ecol 10:544–553

    Google Scholar 

  • Ellstrand NC (2003) Dangerous liaisons? When cultivated plants mate with their wild relatives. In: Scheiner S (ed) Synthesis in ecology and evolution. The Johns Hopkins University Press, Baltimore, pp 1–244

  • FitzJohn RG, Armstrong TT, Newstrom-Lloyd LE, Wilton AD, Cochrane M (2007) Hybridisation within Brassica and allied genera: evaluation of potential for transgene escape. Euphytica 158:209–230

    Google Scholar 

  • Fredshavn JR, Poulsen G, Huybrechts I, Rüdelsheim P (1995) Competitiveness of transgenic oilseed rape. Transgenic Res 4:142–148

    CAS  Google Scholar 

  • Friesen LF, Nelson AG, Van Acker RC (2003) Evidence of contamination of pedigreed canola (Brassica napus) seedlots in western Canada with genetically modified herbicide resistance traits. Agron J 95:1342–1347

    Google Scholar 

  • Funk T, Wenzel G, Schwarz G (2006) Outcrossing frequencies and distribution of transgenic oilseed rape (Brassica napus L.) in the nearest neighbourhood. Eur J Agron 24:26–34

    Google Scholar 

  • Garnier A, Lecomte J (2006) Using spatial and stage-structured invasion model to assess the spread of feral population of transgenic oilseed rape. Ecol Mod 194:141–149

    Google Scholar 

  • Garnier A, Deville A, Lecomte J (2006) Stochastic modelling of feral plant populations with seed immigration and road verge management. Ecol Mod 197:373–382

    CAS  Google Scholar 

  • Garnier A, Pivard S, Lecomte J (2008) Measuring and modelling anthropogenic secondary seed dispersal along road verges for feral oilseed rape. Basic Appl Ecol 9:533–541

    Google Scholar 

  • Gaskell G, Allansdottir A, Allum N, Castro P, Esmer Y, Fischler C, Jackson J, Kronberger N, Hampel J, Mejlgaard N, Quintanilha A, Rammer A, Revuelta G, Stares S, Torgersen H, Wager W (2011) The 2010 Eurobarometer on the life sciences. Nature Biotechnol 29:113–114

    CAS  Google Scholar 

  • Gressel J (2005) The challenges of ferality. In: Gressel J (ed) Crop ferality and volunteerism. Taylor & Francis Publishing Group, Boca Raton, Florida, USA, pp 1–7

  • Gruber S, Claupein W (2007) Fecundity of volunteer oilseed rape and estimation of potential gene dispersal by a practice-related model. Agric Ecosyst Environ 119:401–408

    Google Scholar 

  • Gruber S, Pekrun C, Claupein W (2004) Seed persistence of oilseed rape (Brassica napus): variation in transgenic and conventionally bred cultivars. J Agric Sci 142:29–40

    Google Scholar 

  • Gruber S, Colbach N, Barbottin A, Pekrun C (2008) Post-harvest gene escape and approaches for minimizing it. CAB Rev: Perspect Agric Vet Sci Nut Nat Resour 3:1–17

    Google Scholar 

  • Gruber S, Bühler A, Möhring J, Claupein W (2010) Sleepers in the soil–vertical distribution by tillage and long-term survival of oilseed rape seeds compared with plastic pellets. Eur J Agron 33:81–88

    Google Scholar 

  • Gulden RH, Shirtliffe SJ, Thomas AG (2003a) Harvest losses of canola (Brassica napus) cause large seed bank inputs. Weed Sci 51:83–86

    CAS  Google Scholar 

  • Gulden RH, Shirtliffe SJ, Thomas AG (2003b) Secondary seed dormancy prolongs persistence of volunteer canola in western Canada. Weed Sci 51:904–913

    CAS  Google Scholar 

  • Gulden RH, Thomas AG, Shirtliffe SJ (2004a) Relative contribution of genotypes, seed size and environment to secondary dormancy potential in Canadian spring oilseed rape (Brassica napus). Weed Res 44:97–106

    Google Scholar 

  • Gulden RH, Thomas AG, Shirtliffe SJ (2004b) Secondary dormancy, temperature, and burial depth regulate seedbank dynamics in canola. Weed Sci 52:382–388

    CAS  Google Scholar 

  • Hails RS (2000) Genetically modified plants–the debate continues. Trends Ecol Evol 15:14–18

    PubMed  Google Scholar 

  • Hails RS, Morley K (2005) Genes invading new populations: a risk assessment perspective. Trends Ecol Evol 20:245–252

    PubMed  Google Scholar 

  • Hails RS, Rees M, Kohn DD, Crawley MJ (1997) Burial and seed survival in Brassica napus subsp. oleifera and Sinapsis arvensis including a comparison of transgenic and non-transgenic lines of the crop. Proc R Soc B Biol Sci 264:1–7

    CAS  Google Scholar 

  • Hails RS, Bullock JM, Morley K, Lamb C, Bell P, Horsnell R, Hodgson DJ, Thomas J (2006) Predicting fitness changes in transgenic plants: testing a novel approach with pathogen resistant Brassicas. IOBC/WPRS Bull 29:63–70

    Google Scholar 

  • Hall L, Topinka K, Huffman J, Davis L, Good A (2000) Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Sci 48:688–694

    CAS  Google Scholar 

  • Hansen LB, Siegismund HR, Jørgensen RB (2001) Introgression between oilseed rape (Brassica napus L.) and its weedy relative B. rapa L. in a natural population. Genet Resour Crop Evol 48:621–627

    Google Scholar 

  • Hansen LB, Siegismund HR, Jørgensen RB (2003) Progressive introgression between Brassica napus (oilseed rape) and B. rapa. Heredity 91:276–283

    PubMed  CAS  Google Scholar 

  • Heenan PB, FitzJohn RG, Dawson MI (2004) Diversity of Brassica (Brassicaceae) species naturalised in Canterbury, New Zealand. N Z J Bot 42:815–832

    Google Scholar 

  • Heyn FW (1977) Analysis of unreduced gametes in the Brassiceae by crosses between species and ploidy levels. Z Pflanzenzüchtg 78:13–30

    Google Scholar 

  • Hobson R, Bruce D (2002) Seed loss when cutting a standing crop of oilseed rape with tow types of combine harvester header. Biosyst Eng 81:281–286

    Google Scholar 

  • Hüsken A, Dietz-Pfeilstetter A (2007) Pollen-mediated intraspecific gene flow from herbicide resistant oilseed rape (Brassica napus L.). Transgenic Res 16:557–569

    PubMed  Google Scholar 

  • James C (2010) Global status of commercialized biotech/GM crops: 2010. Highlights of ISAAA briefs No 42, Ithaca, New York, http://www.isaaa.org/resources/publications/briefs/42/executivesummary/default.asp

  • Jenczewski E, Ronfort J, Chèvre AM (2003) Crop-to-wild gene flow, introgression and possible fitness effects of transgenes. Environ Biosafety Res 2:9–24

    PubMed  Google Scholar 

  • Jørgensen RB (2007) Oilseed rape: Co-existence and gene flow from wild species. Adv Bot Res 45:451–464

    Google Scholar 

  • Jørgensen T, Hauser TP, Jørgensen RB (2007) Adventitious presence of other varieties in oilseed rape (Brassica napus) from seed banks and certified seed. Seed Sci Res 17:115–125

    Google Scholar 

  • Jørgensen RB, Hauser T, D’Hertefeldt T, Andersen NS, Hooftman D (2009) The variability of processes involved in transgene dispersal–case studies from Brassica and related genera. Environ Sci Pollut Res 16:389–395

    Google Scholar 

  • Kareiva P, Parker IM, Pascual M (1996) Can we use experiments and models in predicting the invasiveness of genetically engineered organisms? Ecology 77:1670–1675

    Google Scholar 

  • Kawata M, Murakami K, Ishikawa T (2009) Dispersal and persistence of genetically modified oilseed rape around Japanese harbors. Environ Sci Pollut Res 16:120–126

    CAS  Google Scholar 

  • Kerlan MC, Chèvre AM, Eber F (1993) Interspecific hybrids between a transgenic rapeseed (Brassica napus) and related species: cytological characterization and detection of the transgene. Genome 36:1099–1106

    PubMed  CAS  Google Scholar 

  • Knispel AL, McLachlan SM (2009) Landscape-scale distribution and persistence of genetically modified oilseed rape (Brassica napus) in Manitoba, Canada. Environ Sci Pollut Res 17:13–25

    Google Scholar 

  • Knispel AL, McLachlan SM, Van Acker RC, Friesen LF (2008) Gene flow and multiple herbicide resistance in escaped canola populations. Weed Sci 56:72–80

    CAS  Google Scholar 

  • Lecomte J, Bagger Jørgensen R, Bartkowiak-Broda I, Devaux C, Dietz-Pfeilstetter A, Gruber S, Hüsken A, Kuhlmann M, Lutman P, Rakousky S, Sausse C, Squire G, Sweet J, Aheto DW (2007) Gene flow in oilseed rape: what do the datasets of the SIGMEA EU Project tell us for coexistence? In: Stein A, Rodríguez-Cerezo E (eds) Books of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp 49–52

  • Lecoq E, Holt K, Janssens J, Legris G, Pleysier A, Tinland B, Wandelt C (2007) General surveillance: roles and responsibilities the industry view. J Consum Prot Food Safety 2(S1):25–28

    Google Scholar 

  • Levidow L, Carr S (2007) GM crops on trial: technological development as a real world experiment. Futures 39:408–431

    Google Scholar 

  • Londo JP, Bautista NS, Sagers CL, Lee EH, Watrud LS (2010) Glyphosate drift promotes changes in fitness and transgene gene flow in canola (Brassica napus) and hybrids. Ann Bot 106:957–965

    PubMed  CAS  Google Scholar 

  • López-Granados F, Lutman PJW (1998) Effect of environmental conditions on the dormancy and germination of volunteer oilseed rape seed (Brassica napus). Weed Sci 46:419–423

    Google Scholar 

  • Luijten SH, de Jong TJ (2010) A baseline study of the distribution and morphology of Brassica napus L. and Brassica rapa L. in the Netherlands. COGEM report: CGM 2010-03, http://www.cogem.net/ContentFiles/CGM%202010-03%20koolzaad.pdf

  • Lutman PJW, Freeman SE, Pekrun C (2003) The long-term persistence of seeds of oilseed rape (Brassica napus) in arable fields. J Agric Sci 141:231–240

    Google Scholar 

  • Lutman P, Freeman S, Pekrun C (2004) The long-term persistence of seeds of oilseed rape (Brassica napus) in arable fields. J Agric Sci 141:231–240

    Google Scholar 

  • Lutman PJW, Berry K, Payne RW, Simpson E, Sweet JB, Champion GT, May MJ, Wightman P, Walker K, Lainsbury M (2005) Persistence of seeds from crops of conventional and herbicide tolerant oilseed rape (Brassica napus). Proc R Soc B Biol Sci 272:1909–1915

    Google Scholar 

  • Lutman PJW, Sweet J, Berry K, Law J, Payne R, Simpson E, Walker K, Wightman P (2008) Weed control in conventional and herbicide tolerant winter oilseed rape (Brassica napus) grown in rotations with winter cereals in the UK. Weed Res 48:408–419

    CAS  Google Scholar 

  • Marshall B, Dunlop G, Ramsay G, Squire GR (2000) Temperature-dependent germination traits in oilseed rape associated with 5’-anchored simple sequence repeat PCR polymorphisms. J Exp Bot 51:2075–2084

    PubMed  CAS  Google Scholar 

  • Mbongolo Mbella G, Vandermassen E, Van Geel D, Sneyers M, Broeders S, Roosens S (2010) Federal public service of health, food chain safety and environment/contract FP-2010-1: report from the GMOlaboratory of the Scientific Institute of Public Health

  • Menzel G (2006) Verbreitungsdynamik und Auskreuzungspotential von Brassica napus L. (Raps) im Großraum Bremen. GCA-Verlag, Waabs, ISBN 3-89863-213-X

  • Messéan A, Sausse C, Gasquez J, Darmency H (2007) Occurrence of genetically modified oilseed rape seeds in the harvest of subsequent conventional oilseed rape over time. Eur J Agron 27:115–122

    Google Scholar 

  • Messéan A, Squire GR, Perry JN, Angevin F, Gómez-Barbero M, Townend D, Sausse C, Breckling B, Langrell S, Džeroski S, Sweet JB (2009) Sustainable introduction of GM crops into European agriculture: a summary report of the FP6 SIGMEA research project. OCL-OL Corps Gras Li 16:37–51

    Google Scholar 

  • Middelhoff U, Reiche E-W, Windhorst W (2011) An integrative methodology to predict dispersal of genetically modified genotypes in oilseed rape at landscape-level–A study for the region of Schleswig-Holstein, Germany. Ecol Indicat 11:1000–1007

    Google Scholar 

  • Momoh EJJ, Zhou WJ, Kristiansson B (2002) Variation in the development of secondary dormancy in oilseed rape genotypes under conditions of stress. Weed Res 42:446–455

    Google Scholar 

  • Monsanto (2010) The agronomic benefits of glyphosate in Europe—review of the benefits of glyphosate per market use. (Report provided by Ivo Brants)

  • Morgan C, Bruce D, Child R, Ladbrooke Z, Arthur A (1998) Genetic variation for pod shatter resistance among lines of oilseed rape developed from synthetic B. napus. Field Crops Res 58:153–165

    Google Scholar 

  • Nishizawa T, Nakajima N, Aono M, Tamaoki M, Kubo A, Saji H (2009) Monitoring the occurrence of genetically modified oilseed rape growing along a Japanese roadside: 3-year observations. Environ Biosafety Res 8:33–44

    PubMed  CAS  Google Scholar 

  • Nishizawa T, Tamaoki M, Aono M, Kubo A, Saji H, Nakajima N (2010) Rapeseed species and environmental concerns related to loss of seeds of genetically modified oilseed rape in Japan. GM Crops 1:1–14

    Google Scholar 

  • Norris C, Sweet J (2002) Monitoring large scale releases of genetically modified crops (EPG1/5/84) incorporating report on project EPG 1/5/30: monitoring releases of genetically modified crop plants. DEFRA report, EPG 1/5/84, http://www.defra.gov.uk/environment/gm/research/pdf/epg_1-5-84_screen.pdf

  • Norris C, Sweet J, Parker J, Law J (2004) Implications for hybridization and introgression between oilseed rape (Brassica napus) and wild turnip (B. rapa) from an agricultural perspective. In: den Nijs HCM, Bartsch D, Sweet J (eds) Introgression from Genetically Modified Plants into Wild Relatives. CABI publishing, Wallingford, UK, pp 107–123

  • Pascher K, Narendja F, Rau D (2006) Feral oilseed rape—Investigations on its potential for hybridisation. Studie im Auftrag des Bundesministeriums fuer Gesundheit und Frauen, Forschungsberichte der Sektion IV, Band 3/2006, http://www.bmgfj.gv.at/cms/site/attachments/8/1/9/CH0255/CMS1138950978238/feral_oilseed_rape_-_investigation_on_its_potential_for_hybridisation_gesamt_f_hp.pdf

  • Pascher K, Macalka S, Rau D, Gollmann G, Reiner H, Glössl J, Grabherr G (2010) Molecular differentiation of commercial varieties and feral populations of oilseed rape (Brassica napus L.). BMC Evol Biol 10:63

    Google Scholar 

  • Peltzer DA, Ferriss S, FitzJohn RG (2008) Predicting weed distribution at the landscape scale: using naturalized Brassica as a model system. J Appl Ecol 45:467–475

    Google Scholar 

  • Pessel FD, Lecomte J, Emeriau V, Krouti M, Messéan A, Gouyon PH (2001) Persistence of oilseed rape (Brassica napus L.) outside of cultivated fields. Theor Appl Genet 102:841–846

    Google Scholar 

  • Pivard S, Adamczyk K, Lecomte J, Lavigne C, Bouvier A, Deville A, Gouyon PH, Huet S (2008a) Where do the feral oilseed rape populations come from? A large-scale study of their possible origin in a farmland area. J Appl Ecol 45:476–485

    Google Scholar 

  • Pivard S, Demšar D, Lecomte J, Debeljak M, Džeroski S (2008b) Characterizing the presence of oilseed rape feral populations on field margins using machine learning. Ecol Mod 212:147–154

    Google Scholar 

  • Price JS, Hobson RN, Neale MA, Bruce DM (1996) Seed losses in commercial harvesting of oilseed rape. J Agric Eng Res 65:183–191

    Google Scholar 

  • Ramessar K, Capell T, Twyman RM, Christou P (2010) Going to ridiculous lengths–European coexistence regulations for GM crops. Nature Biotechnol 28:133–136

    CAS  Google Scholar 

  • Ramsay G, Thompson C, Squire G (2003) Quantifying landscape-scale gene flow in oilseed rape. DEFRA report RG0216, http://webarchive.nationalarchives.gov.uk/20081023141438/http://www.defra.gov.uk/environment/gm/research/epg-rg0216.htm

  • Raybould A, Cooper C (2005) Tiered tests to assess the environmental risk assessment of fitness changes in hybrids between transgenic crops and wild relatives: the example of virus resistant Brassica napus. Environ Biosafety Res 4:127–140

    PubMed  Google Scholar 

  • Reuter H, Menzel G, Pehlke H, Breckling B (2008) Hazard mitigation or mitigation hazard? Would genetically modified dwarfed oilseed rape (Brassica napus) increase feral survival? Environ Sci Poll Res 15:529–535

    Google Scholar 

  • Rieger MA, Lamond M, Preston C, Powles SB, Roush RT (2002) Pollen-mediated movement of herbicide resistance between commercial canola fields. Science 296:2386–2388

    PubMed  CAS  Google Scholar 

  • Sabalza M, Miralpeix B, Twyman RM, Capell T, Christou P (2011) EU legitimizes GM crop exclusion zones. Nature Biotechnol 29:315–317

    CAS  Google Scholar 

  • Saji H, Nakajima N, Aono M, Tamaoki M, Kubo A, Wakiyama S, Hatase Y, Nagatsu M (2005) Monitoring the escape of transgenic oilseed rape around Japanese ports and roadsides. Environ Biosafety Res 4:217–222

    PubMed  CAS  Google Scholar 

  • Schafer MG, Ross AX, Londo JP, Burdick CA, Lee EH, Travers SE, Van de Water PK, Sagers CL (2010) Evidence for the establishment and persistence of genetically modified canola populations in the US, http://eco.confex.com/eco/2010/techprogram/P27199.HTM

  • Scheffler JA, Dale PJ (1994) Opportunities for gene transfer from transgenic oilseed rape (Brassica napus) to related species. Transgenic Res 3:263–278

    CAS  Google Scholar 

  • SIGMEA (2010) Sustainable introduction of GMO into the European agriculture. Deliverable: field/feral/volunteer/wild relative demography, Work package 2 (T2.2), http://www.inra.fr/sigmea/deliverables

  • Simard MJ, Légère A, Pageau D, Lajeunnesse J, Warwick S (2002) The frequency and persistence of canola (Brassica napus) volunteers in Québec cropping systems. Weed Technol 16:433–439

    Google Scholar 

  • Simard MJ, Légère A, Séguin-Swartz G, Nair H, Warwick S (2005) Fitness of double vs. single herbicide-resistant canola. Weed Sci 53:489–498

    CAS  Google Scholar 

  • Snow AA, Andersen B, Jørgensen RB (1999) Costs of transgenic herbicide resistance introgressed from Brassica napus into weedy B. rapa. Mol Ecol 8:605–615

    Google Scholar 

  • Squire GR (1999) Temperature and heterogeneity of emergence time in oilseed rape. Ann Appl Biol 135:439–447

    Google Scholar 

  • Squire GR, Breckling B, Dietz-Pfeilstetter A, Jørgensen RB, Lecomte J, Pivard S, Reuter H, Young MW (2011) Status of feral oilseed rape in Europe: its minor role as a GM impurity and its potential as a reservoir of transgene persistence. Environ Sci Pollut Res 18:111–115

    CAS  Google Scholar 

  • Stein AJ, Rodríguez-Cerezo E (2010) International trade and the global pipeline of new GM crops. Nature Biotechnol 28:23–25

    CAS  Google Scholar 

  • Sutherland JP, Justinova L, Poppy GM (2006) The responses of crop–wild Brassica hybrids to simulated herbivory and interspecific competition: implications for transgene introgression. Environ Biosafety Res 5:15–25

    PubMed  CAS  Google Scholar 

  • Sweet J, Simpson E, Law J, Lutman P, Berry K, Payne R, Champion G, May M, Walker K, Wightman P, Lainsbury M (2004) Botanical and Rotational Implications of Genetically Modified Herbicide Tolerance (BRIGHT) HGCA Project Report 353, 265. HGCA London, UK

  • Tamis WLM, de Jong TJ (2010) Transport chains and seed spillage of potential GM crops with wild relatives in the Netherlands. COGEM report: CGM 2010-02, http://www.cogem.net/ContentFiles/2010-02%20Transport_chains2.pdf

  • Thomas D, Breve M, Raymer P (1991) Influence of timing and method of harvest on rapeseed yield. J Prod Agric 4:266–272

    Google Scholar 

  • Verordnung (2006) Verbot des Inverkehrbringens von gentechnisch verändertem Raps aus der Ölrapslinie GT73 in Österreich. Bundesgesetzblatt für die Republik Osterreich 13 April: 157

  • Verordnung (2008) Verbot des Inverkehrbringens von gentechnisch verändertem Raps aus den Ölrapslinien MS8, RF3 and MS8xRF3 in Österreich. Bundesgesetzblatt für die Republik Osterreich 9 July: 246

  • von der Lippe M, Kowarik I (2007a) Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conserv Biol 21:986–996

    Google Scholar 

  • von der Lippe M, Kowarik I (2007b) Crop seed spillage along roads: a factor of uncertainty in the containment of GMO. Ecography 30:483–490

    Google Scholar 

  • Waltz E (2009) Battlefield. Nature 461:27–32

    PubMed  CAS  Google Scholar 

  • Warwick SI, Beckie HJ, Small E (1999) Transgenic crops: new weed problems for Canada? Phytoprotection 80:71–84

    Google Scholar 

  • Warwick SI, Simard MJ, Légère A, Beckie HJ, Braun L, Zhu B, Mason P, Séguin-Swartz G, Stewart CN Jr (2003) Hybridization between transgenic Brassica napus L. and its wild relatives: B. rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz. Theor Appl Genet 107:528–539

    PubMed  CAS  Google Scholar 

  • Warwick S, Beckie HJ, Simard MJ, Légère A, Nair H, Séguin-Swartz G (2004) Environmental and agronomic consequences of herbicide-resistant (HR) canola in Canada. In: den Nijs HCM, Bartsch D, Sweet J (eds) Introgression from genetically modified plants into wild relatives. CABI publishing, Wallingford, UK, pp 323–337

  • Warwick SI, Légère A, Simard M-J, James T (2008) Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol Ecol 17:1387–1395

    PubMed  CAS  Google Scholar 

  • Warwick SI, Beckie HJ, Hall LM (2009) Gene flow, invasiveness, and ecological impact of genetically modified crops. Ann N Y Acad Sci 1168:72–99

    PubMed  Google Scholar 

  • Wichmann MC, Alexander MJ, Soons MB, Galsworthy S, Dunne L, Gould R, Fairfax C, Niggemann M, Hails RS, Bullock JM (2009) Human-mediated dispersal of seeds over long distances. Proc R Soc B Biol Sci 276:523–532

    Google Scholar 

  • Wilkinson MJ, Ford CS (2007) Estimating the potential for ecological harm from gene flow to crop wild relatives. Collect Biosafety Rev 3:42–63

    Google Scholar 

  • Wilkinson MJ, Tepfer M (2009) Fitness and beyond: preparing for the arrival of GM crops with ecologically important novel characters. Environ Biosafety Res 8:1–14

    PubMed  Google Scholar 

  • Wilkinson MJ, Timmons AM, Charters Y, Dubbels S, Robertson A, Wilson N, Scott S, O’Brien E, Lawson HM (1995) Problems of risk assessment with genetically modified oilseed rape. In: Proceedings of the Brighton Crop Protection Conference Weeds 3:1035–1044

  • Wilkinson MJ, Sweet J, Poppy GM (2003) Risk assessment of GM plants: avoiding gridlock? Trends Plant Sci 8:208–212

    PubMed  CAS  Google Scholar 

  • Windels P, Alcalde E, Lecoq E, Legris G, Pleysier A, Tinland B, Wandelt C (2008) General surveillance for import and processing: the EuropaBio approach. J Consum Prot Food Safety 3(S2):14–16

    Google Scholar 

  • Yoshimura Y, Beckie HJ, Matsuo K (2006) Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada. Environ Biosafety Res 5:67–75

    PubMed  Google Scholar 

  • Zwaenepoel A, Roovers P, Hermy M (2006) Motor vehicles as vectors of plant species from road verges in a suburban environment. Basic Appl Ecol 7:83–93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Devos.

Additional information

Disclaimer

Opinions and views expressed in this paper are strictly those of the authors, and do not necessarily represent those of the organisations where the authors are currently employed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devos, Y., Hails, R.S., Messéan, A. et al. Feral genetically modified herbicide tolerant oilseed rape from seed import spills: are concerns scientifically justified?. Transgenic Res 21, 1–21 (2012). https://doi.org/10.1007/s11248-011-9515-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-011-9515-9

Keywords

Navigation