Skip to main content
Log in

Li-doped MgO From Different Preparative Routes for the Oxidative Coupling of Methane

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Li-doped MgO was prepared on different preparative routes and with different loadings. The catalytic activity was found to decay for all catalysts for 40 h time on stream. A detailed structural analysis of 0.5 wt% Li-doped MgO showed heavy losses of Li, reduced surface area and grain growth. A correlation between these factors and the deactivation could not be found. The reaction temperature and the flow rate were found to be the main deactivation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

AAS:

Atomic absorption spectroscopy

BET:

Brunauer Emmett Teller

ENDOR:

Electron nuclear double resonance spectroscopy

EPR:

Electron paramagnetic resonance

ESR:

Electron spin resonance

eV:

Electron volt

FID:

Flame ionisation detector

FWHH:

Full width at half height

MAS:

Magic angle spinning

NMR:

Nuclear magnetic resonance spectroscopy

OCM:

Oxidative coupling of methane

PFTR:

Plug flow tubular reactor

S:

Selectivity

SEM:

Scanning electron microscopy

TCD:

Thermal conductivity detector

TEM:

Transmission electron microscopy

TPPM:

Two pulse phase modulation

X:

Conversion

XRD:

X-ray diffraction

References

  1. Bp Statistical Review of World Energy (2008). https://www.bp.com/statisticalreview. Accessed 24 June 2008

  2. Ito T, Lunsford JH (1985) Nature 314:721

    Article  CAS  Google Scholar 

  3. Ito T, Wang JX, Lin CH, Lunsford JH (1985) J Am Chem Soc 107:5062

    Article  CAS  Google Scholar 

  4. Driscoll DJ, Martir W, Wang JX, Lunsford JH (1985) J Am Chem Soc 107:58

    Article  CAS  Google Scholar 

  5. Mirodatos C, Perrichon V, Durupty MC, Moral P (1987) Stud Surf Sci Catal 34:183

    Article  CAS  Google Scholar 

  6. Mirodatos C, Martin GA, Bertolini JC, Saint-Just J (1989) Catal Today 4:301

    Article  CAS  Google Scholar 

  7. Wu MC, Truong CM, Goodman DW (1992) Phys Rev B 46:12688

    Article  CAS  Google Scholar 

  8. Wu MC, Truong CM, Coulter K, Goodman DW (1993) J Vac Sci Technol A, 11:2174

    Article  CAS  Google Scholar 

  9. Wu MC, Truong CM, Coulter K, Goodman DW (1993) J Catal 140:344

    Article  CAS  Google Scholar 

  10. Wu MC, Truong CM, Coulter K, Goodman DW (1992) J Am Chem Soc 114:7565

    Article  CAS  Google Scholar 

  11. Kimble JB, Kolts JH (1986) Energy Process 6:226

    CAS  Google Scholar 

  12. Korf SJ, Roos JA, de Brujin NA, van Ommen JG, Ross JRH (1987) J Chem Soc Chem Commun 54:1433

    Google Scholar 

  13. Korf SJ, Roos JA, de Brujin NA, van Ommen JG, Ross JRH (1988) Catal Today 2:535

    Article  CAS  Google Scholar 

  14. Korf SJ, Roos JA, de Brujin NA, van Ommen JG, Ross JRH (1990) Appl Catal 58:131

    Article  CAS  Google Scholar 

  15. Slagtern Å, Dahl IM, Jens KJ, Hansen E, Seiersten M (1992) Appl Catal A 91:13

    Article  CAS  Google Scholar 

  16. Phillips MD, Eastman AD (1992) Catal Lett 13:157

    Article  CAS  Google Scholar 

  17. Perrichon V, Durupty MC (1988) Appl Catal 42:2178

    Google Scholar 

  18. Wolf EE (1992) Methane conversion by oxidative processes—fundamental and engineering aspects. Van Nostrand Reinhold, New York

  19. Baerns M, Ross JRH (1992) In: Thomas JM, Zamaraev KI (eds) IUPAC international union of pure and applied chemistry. Blackwell Scientific Publications, Oxford, p 315

  20. Choudhary VR, Mulla SAR, Pandit MY, Chaudhari ST, Rane VH (2000) J Chem Technol Biotechnol 75:828

    Article  CAS  Google Scholar 

  21. Aksu Y, Driess M (2009) Angew Chem Int Ed 48:7778

    Article  CAS  Google Scholar 

  22. Ma JG, Aksu Y, Gregoriades LJ, Sauer J, Driess M (2010) Dalton Trans 39:103

    Article  CAS  Google Scholar 

  23. Arndt S, Aksu Y, Driess M, Schomäcker R (2009) Catal Lett 131:258

    Article  CAS  Google Scholar 

  24. Jana S, Aksu Y, Driess M (2009) Dalton Trans 9:1516

    Article  Google Scholar 

  25. Polarz S, Orlov A, Hoffmann A, Wagner MR, Rauch C, Kirste R, Gelhoff Y, Aksu Y, Driess M, van den Berg MWE, Lehmann M (2009) Chem Mater 21:3889

    Article  CAS  Google Scholar 

  26. Heitz S, Aksu Y, Merschjann C, Driess M (2010) Chem Mater 22:1376

    Article  CAS  Google Scholar 

  27. Heitz S, Epping JD, Aksu Y, Driess M (2010) Chem Mater 22:4563

    Article  CAS  Google Scholar 

  28. Kalenik Z, Wolf E (1992) In: EE Wolf (ed) Methane conversion by oxidative processes, Chapter 2. Van Nostrand Reinhold, New York

  29. Anderson A, Norby T (1990) Catal Today 6:575

    Article  Google Scholar 

  30. Sinev MY, Bychkov VY, Korchak VN, Krylov OV (1990) Catal Today 6:543

    Article  CAS  Google Scholar 

  31. Campbell KD, Lunsford JH (1988) J Phys Chem 92:5796

    Article  CAS  Google Scholar 

  32. Abraham MM, Butler CT, Chen Y (1971) J Chem Phys 55:3752

    Article  CAS  Google Scholar 

  33. Schirmer OF (1971) J Phys Chem Solids 32:499

    Article  CAS  Google Scholar 

  34. Abraham MM, Unruh WP, Chen Y (1974) Phys Rev B 10:3540

    Article  CAS  Google Scholar 

  35. Chen Y, Tohver HT, Narayan J, Abraham MM (1977) Phys Rev B 16:5535

    Article  CAS  Google Scholar 

  36. Rius G, Herve A (1974) Solid State Commun 15:399

    Article  CAS  Google Scholar 

  37. Myrach P, Nilius N, Levchenko SV, Gonchar A, Risse T, Dinse KP, Boatner LA, Frandsen W, Horn R, Freund HJ, Schlögl R, Scheffler M (2010) Chem Cat Chem 2:854

    CAS  Google Scholar 

  38. Yates DJC, Zlotin NE (1988) J Catal 111:317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Deutsche Forschungsgemeinschaft for funding the Excellence Cluster “Unicat” (Unifying Concepts in Catalysis) and the IMPRS (International Max Planck Research School) of the Fritz Haber Institute of the Max Planck Society for financial support. We are also obliged to Mr. Axel Schiele and the workshop for their support with the equipment. We thank Dr. Traugott Scheytt and his team for the performance of the AAS analysis and Dr. Nakhal for the H2S pretreatment of the Li/MgO catalyst. We are indepted to Dr. Thomas Risse and Dr. Raimund Horn for their valuable advice. We also thank our apprentices Mrs. Anna Paliszewska and Mr. Domenic Jelinski, for their support with the sample preparation and analysation. We would like to thank Prof. Dr. Arne Thomas for the permission to use his multi-sampling XRD machine and Dr. Kamalakannan Kailasam for the XRD experiments. We thank the Helmholtz Center, Berlin for the permission to use their electron microscope. We thank also the ZELMI (Zentrales Laboratorium für Elektronenmikroskopie, TU, Berlin) for TEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schomäcker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arndt, S., Simon, U., Heitz, S. et al. Li-doped MgO From Different Preparative Routes for the Oxidative Coupling of Methane. Top Catal 54, 1266 (2011). https://doi.org/10.1007/s11244-011-9749-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11244-011-9749-z

Keywords

Navigation