Skip to main content
Log in

Permeability Reduction by Sediment Retention in Saturated Sand Columns

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Recently, researchers in coastal engineering have paid more attention to the role of sediment (particulate organic matter adsorbed on fine solid particles, diameter range 1–\(100~\upmu \)m) in considering the biodiversity of estuaries. In this study, permeability reduction of saturated sand columns by sediment retention is investigated through laboratory experiments. Water-based sediment was injected through vertical sand columns under a constant water head difference, with different flow rates, porosities of the sand columns, and the chemical properties of sediment. It was found that the permeability reduction was uniquely correlated with flow rate and sediment properties; that is, increasing flow rate or using sediment containing high amounts of organic matter causes a significant reduction in permeability. Furthermore, an approximate experimental equation is proposed to predict the retention mass of sediment. This equation can predict the retention mass with a relative error of less than 5 %. In addition, a new model is proposed to determine the permeability reduction by sediment retention. This model could predict the permeability reduction with a relative error of 10 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Batu, V.A.: Generalized two-dimensional analytical solute transport model in bounded media for flux-type finite multiple sources. Water Resour. Res. 29(8), 1125–1132 (1993)

    Article  Google Scholar 

  • Bekhit, H.M., El-Kordyand, M.A., Hassan, A.E.: Contaminant transport in groundwater in the presence of colloids and bacteria: model development and verification. J. Contam. Hydrol. 108, 152–167 (2009)

    Article  Google Scholar 

  • Benamar, A., Ahfir, N.D., Wang, H.Q., Alem, A.: Particle transport in a saturated porous medium: pore structure effects. Comptes Rendus Geosci. 339(10), 674–681 (2007)

    Article  Google Scholar 

  • Bergendahl, J.A., Grasso, D.: Mechanistic basis for particle detachment from granular media. Environ. Sci. Technol. 37(10), 2317–2322 (2003)

    Article  Google Scholar 

  • Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150–166 (1937)

    Google Scholar 

  • Cherblanc, F., Ahmadi, A., Quintard, M.: Two-domain description of solute transport in heterogeneous porous media: comparison between theoretical predictions and numerical experiments. Adv. Water Resour. 30(5), 1127–1143 (2007)

    Article  Google Scholar 

  • Choo, C., Tien, C.: Analysis of the transient behavior of deep-bed filtration. J. Colloid Interface Sci. 169, 13–33 (1995)

    Article  Google Scholar 

  • Darcy, H.: Les fontaines plubliques de la ville de dijon. Victor Dalmont, Paris (1856)

    Google Scholar 

  • Dahaghi, K.A., Gholami, V., Moghadasi, J.: A novel workflow to model permeability impairment through particle movement and deposition in porous media. Transp. Porous Media 86, 867–879 (2011)

    Article  Google Scholar 

  • Dumer, W., Fluhler, H.: Multi-domain model for pore-size dependent transport of solutes in soils. Geoderma 70(2), 281–297 (1996)

    Google Scholar 

  • Frey, J.M., Schmitz, P., Dufreche, J., Gohr, P.I.: Particle deposition in porous media: analysis of hydrodynamic and weak inertial effects. Transp. Porous Media 37(1), 25–54 (1999)

    Article  Google Scholar 

  • Fukuma, H., Hibino, T., Yamamoto, T., Saito, T.: Restoration of water environment by covering granulated coal ash in brakish water lake Nakaumi (Japan). Annu. J. Coast. Eng. 56, 1026–1030 (2009)

    Google Scholar 

  • Fujiwara, T., Hibino, T., Suekuni, M., Suetsugu, H., Tomida, S., Mizuno, M.: Understanding of pore water movement and environmental quality improvement by infiltration pillar. Annu. J. Civ. Eng. Ocean 23, 1135–1140 (2007)

    Article  Google Scholar 

  • Gohr, P.I., Schmitz, P., Houi, D.: Particle capture in porous media when physico-chemical effects dominate. Chem. Eng. Sci. 54(17), 3801–3813 (1999)

    Article  Google Scholar 

  • Han, N.W., Bhakta, J., Carbonell, R.G.: Longitudinal and lateral dispersion in packed beds: effect of column length and particle size distribution. AIChE J. 31(2), 277–288 (1985)

    Article  Google Scholar 

  • Herzig, P.H., Leclerc, D.M., Goff, P.L.: Application to deep filtration. Indus. Eng. Chem. 62(5), 8–35 (1970)

    Article  Google Scholar 

  • Imdakm, A.O., Sahimi, M.: Computer simulation of particle transport processes in flow though porous media. Chem. Eng. Sci. 46(8), 1977–1993 (1991)

    Article  Google Scholar 

  • Iwasaki, T.: Some notes on sand filtration. J. Am. Water Works Assoc. 29(10), 1591–1602 (1937)

    Google Scholar 

  • Keller, A.A., Auset, M.: A review of visualization techniques of biocolloid transport processes at the pore scale under saturated and unsaturated conditions. Adv. Water Resour. 30(6), 1392–1407 (2007)

    Article  Google Scholar 

  • Kim, B.S., Corapcioglu, M.Y.: Contaminant transport in riverbank filtration in the presence of dissolved organic matter and bacteria: a kinetic approach. J. Hydrol. 266, 269–283 (2002)

    Article  Google Scholar 

  • Litwiniszyn, J.: The Phenomenon of Colmatage. Arch. Mechan. Stosow. 18(4), 479–495 (1966)

    Google Scholar 

  • Massei, N., Lacroix, M., Wang, Q.H., Dupont, P.J.: Transport of particulate material and dissolved tracer in a highly permeable porous medium: comparison of the transfer parameters. J. Contam. Hydrol. 57(1), 21–39 (2002)

    Article  Google Scholar 

  • Moghadasi, J., Muller, S.H., Jamialahmadi, M., Sharif, A.: Theoretical and experimental study of particle movement and deposition in porous media during water injection. J. Pet. Sci. Eng. 43(3), 163–181 (2004)

    Article  Google Scholar 

  • Olson, M.S., Ford, R.M., Smith, J.A., Fernandez, E.J.: Quantification of bacterial chemotaxis in porous media using magnetic resonance imaging. Environ. Sci. Technol. 38(14), 3864–387 (2004)

    Article  Google Scholar 

  • Saiers, J., Hornberger, G.: The influence of ionic strength on the facilitated transport of cesium by kaolinite colloids. Water Resour. Res. 35(6), 1713–1727 (1999)

    Article  Google Scholar 

  • Sen, T.K., Khilar, K.C.: Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Colloid Interface Sci. 119(2), 71–96 (2006)

    Google Scholar 

  • Sherwood, J.L., Sung, J.C., Ford, R.M., Fernandez, E.J., Maneval, J.E., Smith, J.A.: Analysis of bacterial random motility in a porous medium using magnetic resonance imaging and immune magnetic labeling. Environ. Sci. Technol. 37(4), 781–785 (2003)

    Article  Google Scholar 

  • Silliman, E.S.: Particle transport through two-dimensional, saturated porous media: influence of physical structure of the medium. J. Hydrol. 167(1), 79–98 (1995)

    Article  Google Scholar 

  • Sinton, L.W., Noonan, M.J., Finlay, R.K., Pang, L., Close, M.E.: Transport and attenuation of bacteria and bacteriophages in an alluvial gravel aquifer. N. Z. J. Mar. Freshwater Res. 34(1), 175–186 (2000)

    Article  Google Scholar 

  • Tomida, S., Hibino, T., Suekuni, M., Tada, K., Mizuno, M.: Study of environmental quality improvement technology using fly ash for consolidated sediment. Annu. J. Civ. Eng. Ocean 21, 743–748 (2005)

    Article  Google Scholar 

  • Touch, N., Hibino, T.: Prediction of the retention volume of sediment during water-based sediment injection. J. Porous Media 16 (2013) (in press)

  • Touch, N., Nakashita, S., Komai, K., Hibino, T.: Friction loss and the permeability of packed sand. In: Proceedings of the International Conference on Civil and Environmental Engineering, vol. 47 (2009)

  • Touch, N., Nakashita, S., Hibino, T.: Deposition behavior of mud in sand beds under the effects of organic properties. Transp. Porous Media 91, 531–546 (2012)

    Article  Google Scholar 

  • Trzaska, A.: Experimental research on the phenomenon of colmatage. Bull. Acad. Pol. Sci. Ser. Sci. Tech. 13(9), 451–775 (1965)

    Google Scholar 

  • Volker, E.R., Zhang, Q., Lockington, D.A.: Numerical modeling of contaminant transport in coastal aquifers. Math. Comput. Simul. 59, 35–44 (2002)

    Article  Google Scholar 

  • Zamani, A., Maini, B.: Flow of dispersed particles through porous media: deep bed filtration. J. Pet. Sci. Eng. 69(1), 71–88 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge partial funding from JSPS: Grant-in-Aid for JSPS fellows (Grant Number: 22-27), as well as from MEXT: Grant-in-Aid for Science Research B (Grant Number: 2140401100). The constructive comments of anonymous reviewers are also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narong Touch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touch, N., Hibino, T. & Nakashita, S. Permeability Reduction by Sediment Retention in Saturated Sand Columns. Transp Porous Med 98, 615–630 (2013). https://doi.org/10.1007/s11242-013-0163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0163-9

Keywords

Navigation