Skip to main content
Log in

Time-Dependent Nuclear Decay Parameters: New Evidence for New Forces?

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

This paper presents an overview of recent research dealing with the question of whether nuclear decay rates (or half-lives) are time-independent constants of nature, as opposed to being parameters which can be altered by an external perturbation. If the latter is the case, this may imply the existence of some new interaction(s) which would be responsible for any observed time variation. Interest in this question has been renewed recently by evidence for a correlation between nuclear decay rates and Earth–Sun distance, and by the observation of a dip in the decay rate for 54Mn coincident in time with the solar flare of 2006 December 13. We discuss these observations in detail, along with other hints in the literature for time-varying decay parameters, in the framework of a general phenomenology that we develop. One consequence of this phenomenology is that it is possible for different experimental groups to infer discrepant (yet technically correct) results for a half-life depending on where and how their data were taken and analyzed. A considerable amount of attention is devoted to possible mechanisms which might give rise to the reported effects, including fluctuations in the flux of solar neutrinos, and possible variations in the magnitudes of fundamental parameters, such as the fine structure constant and the electron-to-proton mass ratio. We also discuss ongoing and future experiments, along with some implications of our work for cancer treatments, 14C dating, and for the possibility of detecting the relic neutrino background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E.G. Adelberger, E. Fischbach, D.E. Krause, R.D. Newman, Constraining the couplings of massive pseudoscalars using gravity and optical experiments. Phys. Rev. D 68(6), 062002 (2003). doi:10.1103/PhysRevD.68.062002

    Article  ADS  Google Scholar 

  • D.E. Alburger, G. Harbottle, E.F. Norton, Half-life of 32Si. Earth Planet. Sci. Lett. 78, 168–176 (1986)

    Article  ADS  Google Scholar 

  • C. Amsler et al., Particle data group. Phys. Lett. B 667(1) (2008)

  • J. Anderson, G. Spangler, Serial statistics: is radioactive decay random? J. Phys. Chem. 77(26) (1973)

  • J.D. Barrow, D.J. Shaw, Varying alpha: New constraints from seasonal variations. Phys. Rev. D 78(6), 067304 (2008). arXiv:0806.4317v1 [hep-ph]

    Article  ADS  Google Scholar 

  • Y.A. Baurov , Experimental investigation of changes in β-decay rate of 60Co and 137Cs. Mod. Phys. Lett. A 16, 2089–2101 (2001)

    Article  ADS  Google Scholar 

  • Y.A. Baurov , Experimental investigation of changes in beta-decay count rate of radioactive elements. Phys. At. Nucl. 70(11), 1825–1835 (2007)

    Article  Google Scholar 

  • H. Becquerel, On the invisible rays emitted by phosphorescent bodies. Comptes Rendus 122, 501–503 (1896)

    Google Scholar 

  • F. Begemann, K. Ludwig, G. Lugmair, K. Min, L. Nyquist, P. Patchett, P. Renne, C.Y. Shih, I. Villa, R. Walker, Call for an improved set of decay constants for geochronological use. Geochim. Cosmochim. Acta 65(1), 111–121 (2001)

    Article  ADS  Google Scholar 

  • V. Berestetskii, E. Lifshitz, L. Pitaevskii, Relativistic Quantum Theory, Part 2 (Pergamon, Oxford, 1979), pp. 402–408

    Google Scholar 

  • R. Bernabei , First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 56, 333–355 (2008)

    Article  Google Scholar 

  • H. Bethe, Possible explanation of the solar neutrino puzzle. Phys. Rev. Lett. 56(12), 1305–1308 (1986)

    Article  ADS  Google Scholar 

  • N. Bogoliubov, D. Shirkov, Introduction To The Theory of Quantized Fields (Wiley, New York, 1959), pp. 260–262

    Google Scholar 

  • G.W. Bruhn, Does radioactivity correlate with the annual orbit of Earth around Sun? Aperion 9(2), 28–40 (2002)

    Google Scholar 

  • V. Chisté, M. Be, C. Dulieu, Evaluation of decay data of radium-226 and its daughters, in Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22–27, 2007, Nice, France, ed. by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray. (EDP Sciences, France, 2008). doi:10.1051/ndata:07122. http://nd2007.edpsciences.org/

    Google Scholar 

  • T.C. Chiu, R. Fairbanks, L. Cao, R. Mortlock, Analysis of the atmospheric 14C record spanning the past 50,000 years derived from high-precision 230Th/234U/238U, 231Pa/235U and 14C dates on fossil corals. Quart. Sci. Rev. 26, 18–36 (2007)

    Article  ADS  Google Scholar 

  • P. Christmas, R.A. Mercer, M.J. Woods, S.M. Judge, 210Bi and the apparent half-life of a sealed 226Ra source. Int. J. Appl. Radiat. Isot. 34(11), 1555 (1983)

    Article  Google Scholar 

  • P.S. Cooper, Searching for modifications to the exponential radioactive decay law with the Cassini spacecraft. Astropart. Phys. 31(4), 267–269 (2009). arXiv:0809.4248v1 [astro-ph]

    Article  ADS  Google Scholar 

  • A. Derbin , Comment on the paper “realization of discrete states during fluctuations in macroscopic processes”. Phys. Usp. 43(2), 199–202 (2000)

    Article  ADS  Google Scholar 

  • G. Duda, G. Gelmini, S. Nussinov, Expected signals in relic neutrino detectors. Phys. Rev. D 64, 122001 (2001)

    Article  ADS  Google Scholar 

  • K.J. Ellis, The effective half-life of a broad beam 238PuBe total body neutron irradiator. Phys. Med. Biol. 35(8), 1079–1088 (1990)

    Article  Google Scholar 

  • G.T. Emery, Perturbation of nuclear decay rates. Ann. Rev. Nucl. Phys. 22, 165–202 (1972)

    Article  ADS  Google Scholar 

  • E.D. Falkenberg, Radioactive decay caused by neutrinos? Aperion 8(2), 32–45 (2001)

    Google Scholar 

  • E.D. Falkenberg, Reply to “Does radioactivity correlate with the annual orbit of Earth around Sun?” by G.W. Bruhn. Aperion 9(2), 41–43 (2002)

    Google Scholar 

  • L. Fassio-Canuto, Neutron beta decay in a strong magnetic field. Phys. Rev. 187(5), 2141 (1969)

    Article  ADS  Google Scholar 

  • E. Fischbach, C. Talmadge, The Search for Non-Newtonian Gravity (Springer, New York, 1999)

    MATH  Google Scholar 

  • E. Fischbach, D.E. Krause, New limits on the couplings of light pseudoscalars from equivalence principle experiments. Phys. Rev. Lett. 82(24), 4753–4756 (1999a). doi:10.1103/PhysRevLett.82.4753

    Article  ADS  Google Scholar 

  • E. Fischbach, D.E. Krause, Constraints on light pseudoscalars implied by tests of the gravitational inverse-square law. Phys. Rev. Lett. 83(18), 3593–3596 (1999b). doi:10.1103/PhysRevLett.83.3593

    Article  ADS  Google Scholar 

  • E. Fischbach et al., Possibility of a Self-induced Contribution to Nuclear Decays, 2009 ANS Proceedings (2009, in preparation)

  • V.V. Flambaum, E.V. Shuryak, How changing physical constants and violation of local position invariance may occur? in AIP Conf. Proc., vol. 995, 2008, pp. 1–11

  • H. Frauenfelder, E.M. Henley, Subatomic Physics, 1st edn. (Prentice-Hall, New Jersey, 1974)

    Google Scholar 

  • M. Fukugita, T. Yanagida, Physics of Neutrinos and Applications to Astrophysics (Springer, Berlin, 2003), p. 181

    Google Scholar 

  • W. Furry, On bound states and scattering in positron theory. Phys. Rev. 81(1), 115–124 (1951)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • G. Gelmini, P. Gondolo, Weakly interacting massive particle annual modulation with opposite phase in late-infall halo models. Phys. Rev. D 64, 023504 (2001)

    Article  ADS  Google Scholar 

  • D. Griffiths, Introduction to Elementary Particles (Wiley, New York, 1987)

    Book  Google Scholar 

  • H.P. Hahn, H.J. Born, J. Kim, Survey on the rate of perturbation of nuclear decay. Radiochim. Acta 23, 23–37 (1976)

    Google Scholar 

  • G. Harbottle, C. Koehler, R. Withnell, A differential counter for the determination of small differences in decay rates. Rev. Sci. Inst. 44(1), 55–59 (1973)

    Article  ADS  Google Scholar 

  • P.E. Hodgson, E. Gadioli, E.G. Erba, Introductory Nuclear Physics (Clarendon, Oxford, 1997), p. 375

    Google Scholar 

  • R. Horvat, Recent results of the neutrino mass squared measurements and the coherent neutrino–cold-dark-matter interaction. Phys. Rev. D 57(8), 5236 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • J. Jenkins, E. Fischbach, Perturbation of nuclear decay rates during the solar flare of 13 December 2006. arXiv:0808.3156v1 [astro-ph] (2008)

  • J. Jenkins et al., Evidence for correlations between nuclear decay rates and Earth–Sun distance. arXiv:0808.3283v1 [astro-ph] (2008)

  • V.R. Khalilov, Electroweak nucleon decays in a superstrong magnetic field. Theor. Math. Phys. 145(1), 1462 (2005)

    Article  MathSciNet  Google Scholar 

  • A. Kogut , Dipole anisotropy in the COBE differential microwave radiometers first-year sky maps. Apstrophys. J. 419, 1–6 (1993)

    Article  ADS  Google Scholar 

  • B.F. Kostenko, M.Z. Yuriev, Possibility of a modification of life time of radioactive elements by magnetic monopoles. Ann. Found. L. de Broglie 33(1–2), 93–106 (2008). arXiv:0709.1052v1 hep-ph

    Google Scholar 

  • E.A. Kushnirenko, I.B. Pogozhev, Comment on the paper by S.E. Shnoll et al. Phys. Usp. 43(2), 203–204 (2000)

    Article  ADS  Google Scholar 

  • R. Lindstrom et al., Does the Half-Life of a Radioactive Sample Depend on Its Shape? 2009 ANS Proceedings (2009, in preparation)

  • V. Lobashev , Direct search for mass of neutrino and anomaly in the tritium beta-spectrum. Phys. Lett. B 460, 227–235 (1999)

    Article  ADS  Google Scholar 

  • V. Lyul’ka, Elementary particle decays in the field of an intense electromagnetic wave. Sov. Phys.-JETP 42(3), 408–412 (1975)

    ADS  Google Scholar 

  • F. Mandl, G. Shaw, Quantum Field Theory–Revised Edition (Wiley, New York, 1993), pp. 159–165

    Google Scholar 

  • J.J. Matese, R.F. O’Connell, Neutron beta decay in a uniform constant magnetic field. Phys. Rev. 180(5), 1289 (1969)

    Article  ADS  Google Scholar 

  • J. Nieves, Neutrinos in a medium. Phys. Rev. D. 40(3), 866–872 (1989)

    Article  ADS  Google Scholar 

  • A. Nikishov, V. Ritus, Quantum processes in the field of a plane electromagnetic wave and in a constant field. Sov. Phys.-JETP 19(5), 1191–1199 (1964)

    MathSciNet  Google Scholar 

  • NNDC, 2008. http://www.nndc.bnl.gov/qcalc

  • NOAA, 2005. http://www.swpc.noaa.gov/NOAAscales/index.html

  • NOAA, NOAA Space Environment Center, SEC PRF 1634, 2006

  • NOAA, 2009. http://www.ngdc.noaa.gov/stp/

  • E. Norman , Influence of physical and chemical environments on the decay rates of 7Be and 40K. Phys. Lett. B 519, 15–22 (2001)

    Article  ADS  Google Scholar 

  • E.B. Norman , Evidence against correlations between nuclear decay rates and Earth–Sun distance. Astropart. Phys. 31, 135–137 (2009)

    Article  ADS  Google Scholar 

  • S.F. Odenwald, J.L. Green, Bracing for a solar superstorm. Sci. Am. 299(2) (2008)

  • B. Odom, D. Hanneke, B. D’Urso, G. Gabrielse, New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Phys. Rev. Lett. 97, 030801 (2006)

    Article  ADS  Google Scholar 

  • T. Ohtsuki, H. Yuki, M. Muto, J. Kasagi, K. Ohno, Enhanced electron-capture decay rate of 7Be encapsulated in C60 cages. Phys. Rev. Lett. 93, 112501 (2004)

    Article  ADS  Google Scholar 

  • A.G. Parkhomov, Bursts of count rate of beta radioactive sources during long-term measurements. Int. J. Pure Appl. Phys. 1, 119–128 (2005)

    Google Scholar 

  • T. Phillips, 2009. http://science.nasa.gov/headlines/y2009/01apr~deepsolarminimum.htm

  • S. Pommé, Problems with the uncertainty budget of half-life measurements. Am. Chem. Soc. Symp. Ser. 945, 282–292 (2007)

    Google Scholar 

  • S. Pommé, J. Camps, R. Van Ammel, J. Paepen, Protocol for uncertainty assessment of half-lives. J. Rad. Nucl. Chem. 276(2), 335–339 (2008)

    Article  Google Scholar 

  • H.R. Reiss, Nuclear beta decay induced by intense electromagnetic fields: Basic theory. Phys. Rev. C 27(3), 1199 (1983)

    Article  ADS  Google Scholar 

  • V. Ritus, Effect of an electromagnetic field on decays of elementary particles. Sov. Phys.-JETP 29(3), 532–541 (1969)

    ADS  Google Scholar 

  • T. Rosenband , Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808 (2008)

    Article  ADS  Google Scholar 

  • E. Rutherford, Radioactive Substances and Their Radiations (Cambridge University Press, New York, 1913)

    Google Scholar 

  • E. Rutherford, J. Chadwick, C. Ellis, Radiations from Radioactive Substances (Cambridge University Press, Cambridge, 1930), p. 167

    MATH  Google Scholar 

  • A.J. Sanders, Implications for C-14 dating of the Jenkins-Fischbach effect and possible fluctuation of the solar fusion rate (2008). arXiv:0808.3986v2 [astro-ph]

  • H. Schrader, Private communication, 2008

  • D.J. Shaw, Detecting seasonal changes in the fundamental constants (2007). arXiv:gr-qc/0702090v1

  • S.E. Shnoll , Realization of discrete states during fluctuations in macroscopic processes. Phys. Usp. 41, 1025–1035 (1998)

    Article  ADS  Google Scholar 

  • S.E. Shnoll , Regular variation of the fine structure of statistical distributions as a consequence of cosmophysical agents. Phys. Usp. 43(2), 205–209 (2000)

    Article  ADS  Google Scholar 

  • H. Siegert, H. Schrader, U. Schötzig, Half-life measurements of europium radionuclides and the long-term stability of detectors. Appl. Radiat. Isot. 49(9–11), 1397 (1998)

    Article  Google Scholar 

  • M. Silverman, W. Strange, C. Silverman, T. Lipscombe, On the run: Unexpected outcomes of random events. Phys. Teach. 37, 218–225 (1999)

    Article  ADS  Google Scholar 

  • M. Silverman, W. Strange, C. Silverman, T. Lipscombe, Tests for randomness of spontaneous quantum decay. Phys. Rev. A 61(042106) (2000)

  • L. Stodolsky, Speculation on detection of the “neutrino sea”. Phys. Rev. Lett. 34(2), 110–112 (1975)

    Article  ADS  Google Scholar 

  • W. Stoeffl, D.J. Decman, Anomalous structure in the beta decay of gaseous molecular tritium. Phys. Rev. Lett. 75(18), 3237 (1995)

    Article  ADS  Google Scholar 

  • P.A. Sturrock, Solar neutrino variability and its implications for solar physics and neutrino physics. Astrophys. J. 688, 53 (2008)

    Article  ADS  Google Scholar 

  • J. Taylor, An Introduction to Error Analysis (University Science Books, Sausalito, 1997)

    Google Scholar 

  • I.M. Ternov , β-decay polarization effects in an intense electromagnetic field. Sov. J. Nucl. Phys. 28(6), 747 (1978)

    Google Scholar 

  • I.M. Ternov , Polarization effects and electron spectrum in the nuclear β decay in the field of an intense electromagnetic wave. Sov. J. Nucl. Phys. 39(5), 710 (1984)

    Google Scholar 

  • S.J. Tu, E. Fischbach, Geometric random inner products: A family of tests for random number generators. Phys. Rev. E 67, 016113 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • S.J. Tu, E. Fischbach, A study on the randomness of the digits of π. Int. J. Mod. Phys. C 16(2), 281–294 (2005)

    Article  MATH  ADS  Google Scholar 

  • J. Uzan, The fundamental constants and their variation: observational and theoretical status. Rev. Mod. Phys. 75, 403–455 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • F. Wissman, Variation observed in environmental radiation at ground level. Rad. Prot. Dos. 118, 3–10 (2006)

    Article  Google Scholar 

  • C.S. Wu, S.A. Moszkowski, Beta Decay (Interscience, New York, 1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Fischbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischbach, E., Buncher, J.B., Gruenwald, J.T. et al. Time-Dependent Nuclear Decay Parameters: New Evidence for New Forces?. Space Sci Rev 145, 285–335 (2009). https://doi.org/10.1007/s11214-009-9518-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-009-9518-5

Keywords

Navigation