Skip to main content
Log in

Simulating strong ground motion from complex sources by reciprocal Green functions

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

We have developed a method to calculate site and path effects for complex heterogeneous media using synthetic Green’s functions. The Green’s functions are calculated numerically by imposing body forces at the site of interest and then storing the reciprocal Green’s functions along arbitrary finite-fault surfaces. By using reciprocal Green’s functions, we can then simulate many source scenarios for those faults because the primary numerical calculations need be done only once. The advantage of the proposed method is shown by evaluation of the site and path effects for three sites in the vicinity of the Los Angeles basin using the Southern California Velocity Model (version 2.2, Magistrale et al., 2000). In this example, we have simulated 300 source scenarios for 5 major southern California faults and compared their responses for period longer then 3 seconds at the selected sites. However, a more detailed comparison with strong motion records will be necessary before a particular hazard assessment can be made. For the tested source scenarios the results show that the variations in the peak velocity amplitudes and durations due to a source scenarios are as large as variations due to a heterogeneous velocity model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aagaard B., Hall J., Heaton T. and Eeri M., 2001. Characterization of near-source ground motions with earthquake simulations Earthquake Spectra, 17, 177–207.

    Article  Google Scholar 

  • Abercrombie R., 1997. Near-surface attenuation and site effects from comparison of surface and deep borehole recordings. Bull. Seismol. Soc. Amer., 87, 731–744.

    Google Scholar 

  • Aki K. and Richards P., 1980. Quantitative Seismology. W.H. Freeman and Co., San Francisco, USA.

    Google Scholar 

  • Bouchon M., Boulin M.-P., Karabulut H., Toksoz M., Dietrich M. and Rosakis A., 2001. How fast is rupture during and earthquake? new insights from the 1999 Turkey earthquakes. Geophys. Res. Lett., 28, 2723–2726.

    Article  Google Scholar 

  • Campbell K., 1997. Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra. Seism. Res. Lett., 68, 154–179.

    Article  Google Scholar 

  • Eisner L. and Clayton R.W., 2001. A reciprocity method for multiple source simulations. Bull. Seismol. Soc. Amer., 91, 553–560.

    Article  Google Scholar 

  • Eisner L. and Clayton R.W., 2002a. A full waveform test of the southern california velocity model by the reciprocity method. Pure Appl. Geophys., 159, 1691–1706.

    Article  Google Scholar 

  • Eisner L. and Clayton R.W., 2002b. Equivalent medium parameters for numerical modelling in media with near-surface low-velocities. Bull. Seismol. Soc. Amer., 92, 711–722.

    Article  Google Scholar 

  • Field E. and the SCEC Phase III Working Group, 2000. Accounting for site effects in probabilistic seismic hazard analyses of Southern California: Overview of the SCEC Phase III report. Bull. Seismol. Soc. Amer., 90, S1–S31.

    Article  Google Scholar 

  • Graves R., 1996. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Amer., 86, 1091–1106.

    Google Scholar 

  • Graves R., 1998. Three-Dimensional finite-difference modeling of the San Andreas fault: Source parameterization and ground-motion levels. Bull. Seismol. Soc. Amer., 88, 881–897.

    Article  Google Scholar 

  • Graves R. and Wald D., 2001. Resolution analysis of finite fault source inversion using 1D and 3D Green’s functions, part I: Strong motions. J. Geophys. Res., 106, 8745–8766.

    Article  Google Scholar 

  • Hough S., 1997. Empirical Green’s function analysis: Taking the next step. J. Geophys. Res., 102, 5369–5384.

    Article  Google Scholar 

  • Ibanez J., Morales J., DeMiguel F., Vidal F., Alguacil G. and Posadas A., 1991. Effect of a sedimentary basin on estimations of q c and q Lg. Phys. Earth Planet. Inter., 66, 244–252.

    Article  Google Scholar 

  • Ji C., Wald D. and Helmberger D., 2001. Source description of the 1999 Hector Mine, California, earthquake; Part II: Complexity of slip history. Bull. Seismol. Soc. Amer., 92, 1208–1226.

    Article  Google Scholar 

  • Kramer S., 1996. Geotechnical Earthquake Engineering. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

    Google Scholar 

  • Liu P. and Archuleta R., 2000. A preliminary finite fault inversion of the 1999 M7.7 Chi Chi, Taiwan earthquake using 3-d Greens functions. EOS AGU Trans., 81, F874.

    Google Scholar 

  • Ma K., Mori J., Lee S. and Yu S., 2001. Spatial and temporal distribution of slip for the 1999 Chichi, Taiwan, earthquake. Bull. Seismol. Soc. Amer., 91, 1069–1087.

    Article  Google Scholar 

  • Ma K.-F. and Kanamori H., 1994. Broadband waveform observation of the 28 June 1991 Sierra-Madre earthquake sequence (M(l) = 5.8). Bull. Seismol. Soc. Amer., 84, 1725–1738.

    Article  Google Scholar 

  • Magistrale H., Day S., Clayton R. and Graves R., 2000. The SCEC Southern California Reference 3D Seismic Velocity Model Version 2. Bull. Seismol. Soc. Amer., 90, S65–S76.

    Article  Google Scholar 

  • Olsen K., 2000. Site amplification in the Los Angeles basin from three-dimensional modeling of ground motion. Bull. Seismol. Soc. Amer., 90, 677–685.

    Article  Google Scholar 

  • Olsen K. and Archuleta R., 1996. Three-dimensional simulation of earthquakes on the Los Angeles fault system. Bull. Seismol. Soc. Amer., 86, 575–596.

    Google Scholar 

  • Petersen M., Bryant W., Cramer C., Cao T., Riechle M., Frankel A., Lienkaemper J., McCrory P. and Schwartz D., 1996. Probabilistic Seismic Hazard Assessment for the State of California. Technical Report, Division of Mines and Geology, open-file report 96-08; United States Geological Survey; open-file report 96-706.

  • Somerville P., Irikura K., Graves R., Sawada S., Wald D., Abrahamson N., Iwasaki Y., Kagawa T., Smith N. and Kowada A., 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seism. Res. Lett., 70, 59–80.

    Article  Google Scholar 

  • Spudich P., 1981. Frequency domain calculation of extended source seismograms. EOS Trans. AGU, 62, 960.

    Google Scholar 

  • Su F., Anderson J. and Zeng Y., 1988. Study of weak and strong ground motion including nonlinearity from the Northridge, California, earthquake sequence. Bull. Seismol. Soc. Amer., 88, 1411–1425.

    Google Scholar 

  • Trifunac M. and Brady A.G., 1975. A study of the duration of strong ground earthquake ground motion. Bull. Seismol. Soc. Amer. 65, 581–626.

    Google Scholar 

  • Vidale J., 1988. Finite-difference calculation of travel-times. Bull. Seismol. Soc. Amer., 78, 2062–2076.

    Google Scholar 

  • Wald D. and Graves R., 1998. The seismic response of the Los Angeles basin, California. Bull. Seismol. Soc. Amer., 88, 337–356.

    Article  Google Scholar 

  • Wald D. and Heaton T., 1994. Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake. Bull. Seismol. Soc. Amer., 84, 668–691.

    Article  Google Scholar 

  • Wald D., Heaton T. and Hudnut K., 1996. The slip history of the 1994 Northridge, California, earthquake determined from strong-motion, teleseismic, GPS, and leveling data. Bull. Seismol. Soc. Amer., 86, S49–S70.

    Article  Google Scholar 

  • Wells D. and Coppersmith K., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Amer., 84, 974–1002.

    Google Scholar 

  • Wessel P. and Smith W., 1991. Free software helps map and display data. EOS Trans. AGU, 72, 441.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisner, L., Clayton, R.W. Simulating strong ground motion from complex sources by reciprocal Green functions. Stud Geophys Geod 49, 323–342 (2005). https://doi.org/10.1007/s11200-005-0013-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-005-0013-5

Keywords

Navigation