Skip to main content

Advertisement

Log in

I’m so tired: biological and genetic mechanisms of cancer-related fatigue

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Objective

The goal of this paper is to discuss cancer-related fatigue (CRF) and address issues related to the investigation into potential biological and genetic causal mechanisms. The objectives are to: (1) describe CRF as a component of quality of life (QOL); (2) address measurement issues that have slowed progress toward an understanding of mechanisms underlying this symptom; (3) review biological pathways and genetic approaches that have promise for the exploration of causal mechanisms of CRF; and (4) offer directions for future research.

Methods

Review, synthesis, and interpretation of the literature.

Results

Until recently, CRF and QOL have been understood primarily as subjective patient-reported experiences. With increased understanding of human genetics, theories and research are being expanded to incorporate biological and genetic understandings of these subjective experiences. Proposed biological and genetic mechanisms of CRF that have been examined include cytokine dysregulation, hypothalamic–pituitary–adrenal (HPA) axis dysfunction, five hydroxy tryptophan (5-HT) neurotransmitter dysregulation, circadian rhythm disruption, alterations in adenosine triphosphate (ATP) and muscle metabolism, and vagal afferent activation. Approaches to the study of genetic mechanisms have also been addressed including candidate genes, genome-wide scanning, and gene expression. Based on the review and synthesis of the literature, directions for future research are proposed.

Conclusions

Understanding the biological and genetic basis of CRF has the potential to contribute to a more complete understanding of the genetic determinants of QOL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Higginson, I. J., Armes, J., & Krishnasamy, M. (2004). Introduction, in fatigue in cancer. In J. Armes, M. Krishnasamy, & I. J. Higginson (Eds.), Fatigue in cancer (pp. xvii–xxi). Oxford: Oxford University Press.

    Google Scholar 

  2. Cella, D., Davis, K., Breitbart, W., & Curt, G. (2001). Cancer-related fatigue: prevalence of proposed diagnostic criteria in a United States sample of cancer survivors. Journal of Clinical Oncology, 19(14), 3385–3391.

    CAS  PubMed  Google Scholar 

  3. Servaes, P., Verhagen, C., & Bleijenberg, G. (2002). Fatigue in cancer patients during and after treatment: Prevalence, correlates and interventions. European Journal of Cancer, 38(1), 27–43.

    Article  CAS  PubMed  Google Scholar 

  4. Smets, E. M., Garssen, B., Cull, A., & de Haes, J. C. (1996). Application of the multidimensional fatigue inventory (MFI-20) in cancer patients receiving radiotherapy. British Journal of Cancer, 73(2), 241–245.

    CAS  PubMed  Google Scholar 

  5. Curt, G. A., Breitbart, W., Cella, D., Groopman, J. E., Horning, S. J., Itri, L. M., et al. (2000). Impact of cancer-related fatigue on the lives of patients: New findings from the Fatigue Coalition. The Oncologist, 5(5), 353–360.

    Article  CAS  PubMed  Google Scholar 

  6. Lawrence, D. P., Kupelnick, B., Miller, K., Devine, D., & Lau, J. (2004). Evidence report on the occurrence, assessment, and treatment of fatigue in cancer patients. Journal of the National Cancer Institute Monographs, 32, 40–50.

    Article  PubMed  Google Scholar 

  7. Vogelzang, N. J., Breitbart, W., Cella, D., Curt, G. A., Groopman, J. E., Horning, S. J., et al. (1997). Patient, caregiver, and oncologist perceptions of cancer-related fatigue: Results of a tripart assessment survey. The Fatigue Coalition. Seminars in Hematology, 34(3 Suppl 2), 4–12.

    CAS  PubMed  Google Scholar 

  8. Wilson, I. B., & Cleary, P. D. (1995). Linking clinical variables with health-related quality of life. A conceptual model of patient outcomes. JAMA, 273(1), 59–65.

    Article  CAS  PubMed  Google Scholar 

  9. Sprangers, M. A. G., Sloan, J. A., Barsevick, A., Chauhan, C., Dueck, A. C., Raat H., et al. (2010). Scientific Imperatives, clinical implications, and theoretical underpinnings for the investigation of the relationship between genetic variables and patient-reported quality-of-life outcomes. Quality of Life Research. doi:10.1007/s11136-010-9759-5.

  10. Andrykowski, M. A., Schmidt, J. E., Salsman, J. M., Beacham, A. O., & Jacobsen, P. B. (2005). Use of a case definition approach to identify cancer-related fatigue in women undergoing adjuvant therapy for breast cancer. Journal of Clinical Oncology, 23(27), 6613–6622.

    Article  PubMed  Google Scholar 

  11. Alexander, S., Minton, O., Andrews, P., & Stone, P. (2009). A comparison of the characteristics of disease-free breast cancer survivors with or without cancer-related fatigue syndrome. European Journal of Cancer, 45(3), 384–392.

    Article  CAS  PubMed  Google Scholar 

  12. NCCN. (2010). The complete library of NCCN clinical practice guidelines in oncology. Fort Washington, PA: National Comprehensive Cancer Network.

    Google Scholar 

  13. Barsevick, A. M., Cleeland, C. S., Manning, D. C., O’Mara, A. M., Reeve, B. B., Scott, J. A., et al. (2010). ASCPRO Recommendations for the assessment of fatigue as an outcome in clinical trials. Journal of Pain and Symptom Management, 39(6), 1086–1099.

    Article  PubMed  Google Scholar 

  14. Mendoza, T. R., Wang, X. S., Cleeland, C. S., Morrissey, M., Johnson, B. A., Wendt, J. K., et al. (1999). The rapid assessment of fatigue severity in cancer patients: Use of the brief fatigue inventory. Cancer, 85(5), 1186–1196.

    Article  CAS  PubMed  Google Scholar 

  15. Piper, B. F., Lindsey, A. M., & Dodd, M. J. (1989). The development of an instrument to measure the subjective dimension of fatigue. In E. M. T. S. G. Funk & M. T. Campagne (Eds.), Key aspects of comfort: Management of pain, fatigue, and nausea (pp. 199–208). New York: Springer.

    Google Scholar 

  16. Schwartz, A. L. (1998). The schwartz cancer fatigue scale: Testing reliability and validity. Oncology Nursing Forum, 25(4), 711.

    CAS  PubMed  Google Scholar 

  17. Smets, E. M., Garssen, B., Bonke, B., & De Haes, J. C. (1995). The multidimensional fatigue inventory (MFI) psychometric qualities of an instrument to assess fatigue. Journal of Psychosomatic Research, 39(3), 315–325.

    Article  CAS  PubMed  Google Scholar 

  18. Stein, K. D., Martin, S. C., Hann, D. M., & Jacobsen, P. B. (1998). A multidimensional measure of fatigue for use with cancer patients. Cancer Practice, 6(3), 143–152.

    Article  CAS  PubMed  Google Scholar 

  19. Belza, B. L. (1995). Comparison of self-reported fatigue in rheumatoid arthritis and controls. Journal of Rheumatology, 22(4), 639–643.

    CAS  PubMed  Google Scholar 

  20. Okuyama, T., Akechi, T., Kugaya, A., Okamura, H., Shima, Y., Maruguchi, M., et al. (2000). Development and validation of the cancer fatigue scale: A brief, three-dimensional, self-rating scale for assessment of fatigue in cancer patients. Journal of Pain and Symptom Management, 19(1), 5–14.

    Article  CAS  PubMed  Google Scholar 

  21. Lee, K. A., Hicks, G., & Nino-Murcia, G. (1991). Validity and reliability of a scale to assess fatigue. Psychiatry Research, 36(3), 291–298.

    Article  CAS  PubMed  Google Scholar 

  22. Ware, J. E., Jr., Snow, K. K., Kosinski, M., & Gandek, B. (1993). SF-36 health survey manual and interpretation guide. Boston: The Health Institute, New England Medical Center.

    Google Scholar 

  23. Alexander, S., Minton, O., Stone, P. C., Alexander, S., Minton, O., & Stone, P. C. (2009). Evaluation of screening instruments for cancer-related fatigue syndrome in breast cancer survivors. Journal of Clinical Oncology, 27(8), 1197–1201.

    Article  PubMed  Google Scholar 

  24. Sadler, I. J., Jacobsen, P. B., Booth-Jones, M., Belanger, H., Weitzner, M. A., & Fields, K. K. (2002). Preliminary evaluation of a clinical syndrome approach to assessing cancer-related fatigue. Journal of Pain and Symptom Management, 23(5), 406–416.

    Article  PubMed  Google Scholar 

  25. Gutstein, H. B. (2001). The biologic basis of fatigue. Cancer, 92(6 Suppl), 1678–1683.

    Article  CAS  PubMed  Google Scholar 

  26. Ryan, J. L., Carroll, J. K., Ryan, E. P., Mustian, K. M., Fiscella, K., & Morrow, G. R. (2007). Mechanisms of cancer-related fatigue. The Oncologist, 12(Suppl 1), 22–34.

    Article  CAS  PubMed  Google Scholar 

  27. Morrow, G. R., Andrews, P. L., Hickok, J. T., Roscoe, J. A., Matteson, S., Morrow, G. R., et al. (2002). Fatigue associated with cancer and its treatment. Supportive Care in Cancer, 10(5), 389–398.

    Article  PubMed  Google Scholar 

  28. Bower, J. E., Ganz, P. A., Aziz, N., Fahey, J. L., Cole, S. W., Bower, J. E., et al. (2003). T-cell homeostasis in breast cancer survivors with persistent fatigue. Journal of the National Cancer Institute, 95(15), 1165–1168.

    Article  PubMed  Google Scholar 

  29. Greenberg, D. B., Gray, J. L., Mannix, C. M., Eisenthal, S., & Carey, M. (1993). Treatment-related fatigue and serum interleukin-1 levels in patients during external beam irradiation for prostate cancer. Journal of Pain and Symptom Management, 8(4), 196–200.

    Article  CAS  PubMed  Google Scholar 

  30. Bower, J. E., Ganz, P. A., Aziz, N., & Fahey, J. L. (2002). Fatigue and proinflammatory cytokine activity in breast cancer survivors. Psychosomatic Medicine, 64(4), 604–611.

    PubMed  Google Scholar 

  31. Levy, S., Herberman, R., Lippman, M., & d’Angelo, T. (1987). Correlation of stress factors with sustained depression of natural killer cell activity and predicted prognosis in patients with breast cancer. Journal of Clinical Oncology, 5(3), 348–353.

    CAS  PubMed  Google Scholar 

  32. Levy, S. M., Herberman, R. B., Maluish, A. M., Schlien, B., & Lippman, M. (1985). Prognostic risk assessment in primary breast cancer by behavioral and immunological parameters. Health Psychology, 4(2), 99–113.

    Article  CAS  PubMed  Google Scholar 

  33. Seruga, B., Zhang, H., Bernstein, L. J., & Tannock, I. F. (2008). Cytokines and their relationship to the symptoms and outcome of cancer. Nature Reviews Cancer, 8(11), 887–899.

    Article  CAS  PubMed  Google Scholar 

  34. Kurzrock, R. (2001). The role of cytokines in cancer-related fatigue. Cancer, 92(6 Suppl), 1684–1688.

    Article  CAS  PubMed  Google Scholar 

  35. Menzies, H., Chochinov, H., & Breitbart, W. (2005). Cytokines, cancer, and depression: Connecting the dots [comment]. Journal of Supportive Oncology, 3, 55–57.

    PubMed  Google Scholar 

  36. Quesada, J. R., Talpaz, M., Rios, A., Kurzrock, R., & Gutterman, J. U. (1986). Clinical toxicity of interferons in cancer patients: a review. Journal of Clinical Oncology, 4(2), 234–243.

    CAS  PubMed  Google Scholar 

  37. Maes, M., Meltzer, H. Y., Bosmans, E., Bergmans, R., Vandoolaeghe, E., Ranjan, R., et al. (1995). Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. Journal of Affective Disorders, 34(4), 301–309.

    Article  CAS  PubMed  Google Scholar 

  38. Musselman, D. L., Miller, A. H., Porter, M. R., Manatunga, A., Gao, F., Penna, S., et al. (2001). Higher than normal plasma interleukin-6 concentrations in cancer patients with depression: preliminary findings. American Journal of Psychiatry, 158(8), 1252–1257.

    Article  CAS  PubMed  Google Scholar 

  39. Schubert, C., Hong, S., Natarajan, L., Mills, P. J., Dimsdale, J. E., Schubert, C., et al. (2007). The association between fatigue and inflammatory marker levels in cancer patients: A quantitative review. Brain, Behavior, and Immunity, 21(4), 413–427.

    Article  CAS  PubMed  Google Scholar 

  40. Ahlberg, K., Ekman, T., & Gaston-Johansson, F. (2004). Levels of fatigue compared to levels of cytokines and hemoglobin during pelvic radiotherapy: A pilot study. Biological Research Nursing, 5(3), 203–210.

    Article  Google Scholar 

  41. Meyers, C. A., Albitar, M., Estey, E., Meyers, C. A., Albitar, M., & Estey, E. (2005). Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer, 104(4), 788–793.

    Article  CAS  PubMed  Google Scholar 

  42. Rich, T. A. (2007). Symptom clusters in cancer patients and their relation to EGFR ligand modulation of the circadian axis. The Journal of Supportive Oncology, 5(4), 167–174; discussion 176–177.

    Google Scholar 

  43. Bender, C. M., Sereika, S. M., Brufsky, A. M., Ryan, C. M., Vogel, V. G., Rastogi, P., et al. (2007). Memory impairments with adjuvant anastrozole versus tamoxifen in women with early-stage breast cancer. Menopause, 14(6), 995–998.

    Article  PubMed  Google Scholar 

  44. Posener, J. A., Schildkraut, J. J., Samson, J. A., & Schatzberg, A. F. (1996). Diurnal variation of plasma cortisol and homovanillic acid in healthy subjects. Psychoneuroendocrinology, 21(1), 33–38.

    Article  CAS  PubMed  Google Scholar 

  45. Bower, J. E., Ganz, P. A., Aziz, N., Bower, J. E., Ganz, P. A., & Aziz, N. (2005). Altered cortisol response to psychologic stress in breast cancer survivors with persistent fatigue. Psychosomatic Medicine, 67(2), 277–280.

    Article  PubMed  Google Scholar 

  46. Bailey, S. P., Davis, J. M., & Alhlborn, E. N. (1993). Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue. Journal of Applied Physiology, 74, 3006–3012.

    CAS  PubMed  Google Scholar 

  47. Andrews, P. L. R., Morrow, G. R., & Hickok, J. T. (2004). Mechanisms and models of fatigue associated with cancer and its treatment. Evidence of pre-clinical and clinical studies. In J. Armes, M. Krishnasamy, & I. Higginson (Eds.), Fatigue in cancer (pp. 51–87). Oxford: Oxford University Press.

    Google Scholar 

  48. Roscoe, J. A., Morrow, G. R., Hickok, J. T., Mustian, K. M., Griggs, J. J., Matteson, S. E., et al. (2005). Effect of paroxetine hydrochloride (Paxil) on fatigue and depression in breast cancer patients receiving chemotherapy. Breast Cancer Research and Treatment, 89(3), 243–249.

    Article  CAS  PubMed  Google Scholar 

  49. Morrow, G. R., Hickok, J. T., Roscoe, J. A., Raubertas, R. F., Andrews, P. L., Flynn, P. J., et al. (2003). Differential effects of paroxetine on fatigue and depression: A randomized, double-blind trial from the University of Rochester Cancer Center Community Clinical Oncology Program. Journal of Clinical Oncology, 21(24), 4635–4641.

    Article  CAS  PubMed  Google Scholar 

  50. Berger, A. M. (1998). Patterns of fatigue and activity and rest during adjuvant breast cancer chemotherapy. Oncology Nursing Forum, 25(1), 51–62.

    CAS  PubMed  Google Scholar 

  51. Mormont, M. C. (1997). Circadian-system alterations during cancer processes: A review. International Journal of Cancer, 70, 241–247.

    Article  CAS  Google Scholar 

  52. Agteresch, H. J., Dagnelie, P. C., van der Gaast, A., Stijnen, T., & Wilson, J. H. (2000). Randomized clinical trial of adenosine 5′-triphosphate in patients with advanced non-small-cell lung cancer. Journal of the National Cancer Institute, 92(4), 321–328.

    Article  CAS  PubMed  Google Scholar 

  53. Segerstrom, S. C., & Miller, G. E. (2004). Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychological Bulletin, 130(4), 601–630.

    Article  PubMed  Google Scholar 

  54. Reyes-Gibby, C. C., Wu, X., Spitz, M., Kurzrock, R., Fisch, M., Bruera, E., et al. (2008). Molecular epidemiology, cancer-related symptoms, and cytokines pathway. Lancet Oncology, 9(8), 777–785.

    Article  CAS  PubMed  Google Scholar 

  55. Reyes-Gibby, C. C., Spitz, M., Wu, X., Merriman, K., Etzel, C., Bruera, E., et al. (2007). Cytokine genes and pain severity in lung cancer: Exploring the influence of TNF-alpha-308 G/A IL6–174G/C and IL8–251T/A. Cancer Epidemiology, Biomarkers and Prevention, 16(12), 2745–2751.

    Article  CAS  PubMed  Google Scholar 

  56. Irwin, M. R., Miller, A. H., Irwin, M. R., & Miller, A. H. (2007). Depressive disorders and immunity: 20 years of progress and discovery. Brain, Behavior, and Immunity, 21(4), 374–383.

    Article  CAS  PubMed  Google Scholar 

  57. Collado-Hidalgo, A., Bower, J. E., Ganz, P. A., Irwin, M. R., & Cole, S. W. (2008). Cytokine gene polymorphisms and fatigue in breast cancer survivors: Early findings. Brain, Behavior, and Immunity, 22, 1197–1200.

    Google Scholar 

  58. Shafqat, A., Einhorn, L. H., Hanna, N., Sledge, G. W., Hanna, A., Juliar, B. E., et al. (2005). Screening studies for fatigue and laboratory correlates in cancer patients undergoing treatment. Annals of Oncology, 16(9), 1545–1550.

    Article  CAS  PubMed  Google Scholar 

  59. Whistler, T., Taylor, R., Craddock, R. C., Broderick, G., Klimas, N., Unger, E. R., et al. (2006). Gene expression correlates of unexplained fatigue. Pharmacogenomics, 7(3), 395–405.

    Article  CAS  PubMed  Google Scholar 

  60. Aspler, A. L., Bolshin, C., Vernon, S. D., Broderick, G., Aspler, A. L., Bolshin, C., et al. (2008). Evidence of inflammatory immune signaling in chronic fatigue syndrome: A pilot study of gene expression in peripheral blood. Behavioral and Brain Functions Electronic Resource: BBF, 4, 44.

    Article  Google Scholar 

  61. Kerr, J. R., Burke, B., Petty, R., Gough, J., Fear, D., Mattey, D. L., et al. (2008). Seven genomic subtypes of chronic fatigue syndrome/myalgic encephalomyelitis: A detailed analysis of gene networks and clinical phenotypes. Journal of Clinical Pathology, 61(6), 730–739.

    Article  CAS  PubMed  Google Scholar 

  62. Reyes, M., Nisenbaum, R., Hoaglin, D. C., Unger, E. R., Emmons, C., Randall, B., et al. (2003). Prevalence and incidence of chronic fatigue syndrome in Wichita, Kansas. Archives of Internal Medicine, 163(13), 1530–1536.

    Article  PubMed  Google Scholar 

  63. Plomin, R., DeFries, J. C., McClearn, G. E., & McGuffin, P. (2001). Behavioral Genetics. New York: Worth Publishers and W. H. Freeman and Co.

    Google Scholar 

  64. Hartyl, D. L., & Jones, E. W. (Eds.). (2009). Genetics: Analysis of genes, genomes (7th ed.). Sudbury, Massachusetts: Jones and Bartlett.

    Google Scholar 

Download references

Acknowledgments

GENEQOL Consortium participants per March 2009: Amy P. Abertnethy, Duke Cancer Care Research Program, Duke University Medical Center, Durham, NC, US; Frank Baas, Laboratory of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Andrea M. Barsevick, Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, US; Meike Bartels, Department of Biological Psychology, VU University, Amsterdam, the Netherlands; Dorret I. Boomsma, Department of Biological Psychology, VU University, Amsterdam, the Netherlands; Cynthia Chauhan, Cancer Advocay, Wichita, KS, US; Charles S. Cleeland, Department of Symptom Research, The University of Texas M. D. Anderson Cancer Center, Houston, TX, US; Amylou C. Dueck, Section of Biostatistics, Mayo Clinic, Scottsdale, AZ, US; Marlene H. Frost, Women’s Cancer Program, Mayo Clinic, Rochester, MN, US; Per Hall, Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden; Michele Y. Halyard, Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ, US; Pål Klepstad, Department of Intensive Care Medicine, St Olavs University Hospital, Norwegian University of Technology and Science, Trondheim, Norway; Nicholas G. Martin, Queensland Institute of Medical Research, Brisbane, Australia; Christine Miaskowski, School of Nursing, University of California, San Francisco, CA, US; Miriam Mosing, Queensland Institute of Medical Research, Brisbane, Australia; Benjamin Movsas, Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, US; Cornelis J. F. Van Noorden, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Donald L. Patrick, Department of Health Services, University of Washington, Seattle, WA, US; Nancy L. Pedersen, Department of Medical Epidemiology and Biostatistics, Karolinska; Institute, Stockholm, Sweden; Mary E. Ropka, Cancer Prevention and Control Program, Fox Chase Cancer Center, Cheltenham, PA, US; Quiling Shi, Department of Symptom Research, The University of Texas M. D. Anderson Cancer Center, Houston, TX, US; Gen Shinozaki, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, US; Jasvinder A. Singh, Minneapolis Veterans Affairs Medical Center and University of Minnesota, Minneapolis, MN and Mayo Clinic College of Medicine, Rochester, MN, US; Jeff A. Sloan, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, US; Mirjam A. G. Sprangers, Department of Medical Psychology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Ruut Veenhoven, Faculty of Social Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands; Ping Yang, Department of Genetic Epidemiology, Mayo Clinic, Rochester, MN, US; Aeilko H. Zwinderman, Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Andrea Barsevick.

Appendix: Glossary [63, 64]

Appendix: Glossary [63, 64]

  • Case Definition: Criteria or standards used to identify an instance of a disease, syndrome, or condition;

  • DNA (deoxyribonucleic acid): The two-stranded molecule that encodes genetic information;

  • Gene: The basic unit of inheritance. A sequence of DNA bases that codes for a particular product;

  • Genome: All the DNA sequences of an organism;

  • Genotype: The genetic constitution of an organism that is not manifested as outward characteristics;

  • Phenotype: Physical characteristics of an organism or the presence of a disease that may or may not be genetic;

  • Polymorphism: A locus with two or more alleles (alternative forms of a gene at a locus);

  • Functional polymorphism: DNA sequence variations that alter the expression and/or functioning of the gene product;

  • Single nucleotide polymorphism (SNP): Sequences in the genome that differ by a single nucleotide between one portion of the population and another.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barsevick, A., Frost, M., Zwinderman, A. et al. I’m so tired: biological and genetic mechanisms of cancer-related fatigue. Qual Life Res 19, 1419–1427 (2010). https://doi.org/10.1007/s11136-010-9757-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-010-9757-7

Keywords

Navigation