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Abstract A Bayesian game is a game of incomplete information in which the rules of
the game are not fully known to all players. We consider the Bayesian game of Battle
of Sexes that has several Bayesian Nash equilibria and investigate its outcome when
the underlying probability set is obtained from generalized Einstein–Podolsky–Rosen
experiments. We find that this probability set, which may become non-factorizable,
results in a unique Bayesian Nash equilibrium of the game.

Keywords Quantum games · Bayesian Nash equilibria · EPR experiments ·
Quantum probability

1 Introduction

The standard approach to constructing quantum games [1–57] naturally uses the for-
malism of quantum mechanics in Hilbert space [58]. In recent years, however, a prob-
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abilistic approach to this research area [28,39,48–50,52–54] has been proposed that
uses sets of non-factorizable quantum mechanical probabilities, i.e., without using the
quantum mechanical concepts of state vectors, self-adjoint operators, and quantum
measurement. This is with a view of making the area of quantum games more accessi-
ble to wider mathematical application, as the methods and range of solution concepts
of game theory [59–62] are used and exploited, without any real need for invoking the
Hilbert space formalism of quantum mechanics.

The probabilistic approach for a two-player two-strategy game directly uses sets
of quantum probabilities corresponding to the measurement outcomes on a two-qubit
quantum system. As is known, the setting of generalized Einstein–Podolsky–Rosen
(EPR) experiments [63–71] performed on this system leads to the consideration of a set
of 16 quantum probabilities. Properties of this probability set have been investigated
by Cereceda [71], and it has been pointed out that the CHSH form of Bell’s inequality
[70] can be re-expressed in terms of constraints on the elements from this set. It is
observed that only a non-factorizable probability set, as is defined later, can lead to
the violation of Bell’s inequality and that not every non-factorizable probability set
violates Bell’s inequality.

A Bayesian game is a game of incomplete information in which the rules of the
game are not fully known to all players. In this paper, we study a Bayesian game
that is a variant of the well-known Battle of Sexes game, also studied [12,36] in the
quantum game literature. In an earlier study [36], using the quantization protocol
based on Schmidt decomposition [58], a Bayesian game of incomplete information
[62] has been investigated in relation to the violation of Bell’s inequality [58,65–68].
The present paper, however, adopts a different approach in that, without referring to the
Hilbert space formalism, it finds the outcome of a Bayesian game when the considered
probability set can be non-factorizable—this can arise, in an experimental situation,
from a setup involving quantum entanglement, such as an EPR-type experiment, where
the CHSH form of Bell’s inequality is violated.

In its normal form representation, the game matrix of the Bayesian game has the
same number of entries as the 16 elements εi in the probability set that corresponds
to the generalized EPR experiments [71]. We find that the richer structure of the
Bayesian game permits a natural embedding of the classical factorizable game within
the quantum game. We show that, whereas the classical factorizable Bayesian game
of imperfect information has several Nash equilibria, its non-factorizable quantum
version obtained from a set of quantum probabilities corresponding to generalized
EPR experiments has a unique Nash equilibrium.

The suggested probabilistic approach to obtaining quantum games thus re-expresses
players’ payoff relations in terms of a set of probabilities that can also arise in a
quantum mechanical experiment. As the approach is based on probabilities only, it
does not refer to the formalism of quantum mechanics using state vectors, unitary
transformations, and quantum measurements. As game theory is a broad area, with
applications ranging from trade, politics, sociology, biology, engineering, etc., most
researchers in this area are naturally not familiar with the mathematical formalism
of quantum mechanics. This paper thus fills in that gap and demonstrates how an
unusual game-theoretic outcome for a Bayesian game results when probability sets
that are obtained in quantum mechanical experiments are the underlying probabilities
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of a Bayesian game. In this approach, the quantum game reduces itself to the classical
game when the considered probability set becomes factorizable.

The rest of this paper is organized as follows. Sections 2 and 3 present a review
of the classical theory of a Bayesian game that is a variant of the game of Battle of
Sexes. Section 4 describes quantum probabilities in generalized EPR experiments,
their constraints, and how within the quantum game the players’ payoff relations are
defined in terms of these probabilities. Section 5 analyses the outcome of the Bayesian
game of Battle of Sexes with EPR probabilities, and Sect. 6 discusses the results.

2 The Bayesian game of Battle of Sexes and its variant

The game of Battle of Sexes (BoS) describes [62] the following situation. Two people
Alice and Bob wish to go out together, and two concerts are available: one with music
by Bach, and one with music by Stravinsky. One person prefers Bach, and the other
prefers Stravinsky. If they go to different concerts, each of them is equally unhappy
listening to the music of either composer. The situation is represented by the following
matrix

Alice
B
S

Bob
B S(

(2, 1) (0, 0)
(0, 0) (1, 2)

)
, (1)

where Bach and Stravinsky are represented by symbols B and S, respectively. For this
game, a Nash equilibrium (NE) is a pair of strategies such that each player’s strategy
is the best reply to the strategic choice of the other players. In other words, unilateral
deviation from a Nash equilibrium by a player in the form of a different choice of
strategy will produce a payoff that is less than or equal to what a Nash equilibrium
strategy will give to that player. Analysis shows [62] that this game has three mixed-
strategy Nash equilibria (0, 0),

( 2
3 ,

1
3

)
, (1, 1), where the numbers in parentheses are

the Alice’s and Bob’s probabilities of choosing the strategy B.
An interesting variant of this game [62] is the one in which Alice is unsure whether

Bob prefers to join her or prefers to avoid her, whereas Bob knows Alice’s preferences.
Assume that Alice thinks that with probability 1

2 Bob wants to go out with her, and
with probability 1

2 Bob wants to avoid her,

Alice playing against Bob’s two types

probability 1
2

B
S

B S(
(2, 1) (0, 0)
(0, 0) (1, 2)

)

Bob’s first type

probability 1
2

B
S

B S(
(2, 0) (0, 2)
(0, 1) (1, 0)

)
,

Bob’s second type

(2)

that is, from Alice’s perspective, Bob has two possible types, the first is shown on the
left and the second is on the right in (2).
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Alice does not know Bob’s type and is thus faced with the situation of choosing her
rational action that is based on her belief about the action of Bob of each type. Given
these beliefs, and her belief about the likelihood of each type, she can calculate her
expected payoff in each case. For instance, given that Alice plays B, and Bob of first
type (who wishes to meet Alice) plays B, whereas Bob of second type (who wishes
to avoid Alice) plays S, then Alice’s expected payoff is 1

2 (2)+ 1
2 (0) = 1.

There are 4 possible pairs of actions of Bob’s two types given as (B,B), (B,S),
(S,B), and (S,S). Here, for instance, (S,B) describes that Bob’s first type plays S
and Bob’s second type plays B. Players’ expected payoffs are then obtained as given
below.

Alice

Bob’s two types
(B,B) (B,S) (S,B) (S,S)

B (
2, 1

2

) (
1, 3

2

)
(1, 0) (0, 1)

S (
0, 1

2

) ( 1
2 , 0

) ( 1
2 ,

3
2

)
(1, 1)

. (3)

One can then show [62] that the triplet (B, (B,S)), where the first entry in the
bracket is Alice’s action B and (B,S) is the pair of actions of the two types of Bob,
constitutes a Nash equilibrium. This is a pure strategy Nash equilibrium consisting of
three actions, one for Alice and one for each of the two types of Bob, with the property
that (a) Alice’s action is optimal given the actions of the two types of Bob, (b) the
action of each type of Bob is optimal given the action of Alice.

3 Battle of Sexes with imperfect information

We now consider a situation in which neither player knows whether the other wants
to meet or not [62]. As before, Alice assumes that Bob will prefer to join her with
probability 1

2 and will prefer to avoid her with probability 1
2 . Moreover, Bob expects

with probability ω, Alice will prefer to join him and with probability (1 − ω) that
she will prefer to avoid him. It is assumed that both Alice and Bob know their own
preferences. The game can be represented as shown in Fig. 1 [62].

Consider the payoffs of Alice of type 1. She believes that with probability 1
2 , she

faces Bob of type 1 and with probability 1
2 she faces Bob of type 2. Assume that Bob

of type 1 chooses B and Bob of type 2 chooses S. Then, if Alice of type 1 chooses B,
her expected payoff is 1

2 (2)+ 1
2 (0) = 1, and if she chooses S, her expected payoff is

1
2 (0)+ 1

2 (1) = 1
2 .

We represent the action of the two types of Bob by the pairs (B,B), (B,S), (S,B),
(S,S), where the first entry in the bracket is the action of Bob of type 1 and the second
entry is the action of Bob of type 2. The expected payoff to Alice of type 1 when she
chooses B or S, against the 4 pairs of actions of the two types of Bob are

Alice of type 1

Bob’s two types
(B,B) (B,S) (S,B) (S,S)

B 2 1 1 0

S 0 1
2

1
2 1

, (4)
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Fig. 1 Game of Battle of Sexes when each player is unsure of other player’s preferences [62]

and similarly the payoff to Alice of type 2 is found as

Alice of type 2

Bob’s two types
(B,B) (B,S) (S,B) (S,S)

B 0 1 1 2

S 1 1
2

1
2 0

. (5)

Consider the case when Alice of type 1 plays B, Alice of type 2 plays S, Bob of
type 1 plays S, and Bob of type 2 plays B. We represent this case by the quadru-
ple (B,S), (S,B) where the entries in the first pair are chosen by Alice’s two types,
respectively, and the entries in the second pair are chosen by Bob’s two types, respec-
tively. For this quadruple, the payoffs to Alice’s two types can be found from (4, 5)
at the entries located at the intersection of the same column with entry (S,B) and the
two row entries at B and S corresponding to Alice of type 1 and type 2, respectively:
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�A1 {(B,S), (S,B)} = 1,�A2 {(B,S), (S,B)} = 1

2
, (6)

where the subscripts 1 and 2 for A or B give the type of that player.
The following table gives the expected payoffs to Alice’s two types against the pairs

of actions (B,B), (B,S), (S,B), (S,S) by Bob’s two types, respectively,

Alice’s two types

Bob’s two types
(B,B) (B,S) (S,B) (S,S)

(B,B) (2, 0) (1, 1) (1, 1) (0, 2)

(B,S) (2, 1)
(
1, 1

2

) (
1, 1

2

)
(0, 0)

(S,B) (0, 0)
( 1

2 , 1
) ( 1

2 , 1
)

(1, 2)

(S,S) (0, 1)
( 1

2 ,
1
2

) ( 1
2 ,

1
2

)
(1, 0)

, (7)

where in the column on the left, for instance, (B,S)means that Alice of type 1 chooses
B and Alice of type 2 chooses S. The two payoff entries in brackets are the expected
payoffs to Alice of type 1 and type 2, respectively. In (7), consider the entry

( 1
2 , 1

)
at

the intersection of 3rd row (S,B) and 3rd column (S,B). This means that Alice of
the types 1 and 2 chooses S and B, respectively, and Bob of the types 1 and 2 also
chooses S and B, respectively. The payoff to Alice of type 1 and type 2 are 1

2 and 1,
respectively.

Similarly, the payoffs to Bob’s two types can be found as

�B1 {(B,S), (S,B)} = ω(0)+ (1 − ω)(2) = 2(1 − ω), (8)

�B2 {(B,S), (S,B)} = ω(0)+ (1 − ω)(1) = 1 − ω, (9)

and one can write the expected payoffs to Bob’s first type as

Bob’s type 1

Alice’s two types
(B,B) (B,S) (S,B) (S,S)

B 1 ω 1 − ω 0

S 0 2(1 − ω) 2ω 2

, (10)

and, similarly, the expected payoffs to Bob’s second type are obtained as

Bob’s type 2

Alice’s two types
(B,B) (B,S) (S,B) (S,S)

B 0 1 − ω ω 1

S 2 2ω 2(1 − ω) 0

. (11)

As it is the case for payoffs to Alice’s two types above, (10) and ( 11) can be joined
together to obtain the payoffs to Bob’s two types as
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Alice’s two types

Bob’s two types
(B,B) (B,S) (S,B) (S,S)

(B,B) (1, 0) (1, 2) (0, 0) (0, 2)

(B,S) (ω, 1 − ω) (ω, 2ω) (2(1 − ω), (1 − ω)) (2(1 − ω), 2ω)

(S,B) ((1 − ω), ω) ((1 − ω), 2(1 − ω)) (2ω,ω) (2ω, 2(1 − ω))

(S,S) (0, 1) (0, 0) (2, 1) (2, 0)

,

(12)

where the entries in brackets are the expected payoffs to Bob of type 1 and type 2,
respectively. Now, (7) and (12 ) can be joined together to obtain

Alice

Bob
(B,B) (B,S) (S,B) (S,S)

(B,B) (2, 0), (1, 0) (1, 1), (1, 2) (1, 1), (0, 0) (0, 2), (0, 2)

(B,S) (2, 1), (ω, 1−ω) (1, 1
2 ), (ω, 2ω) (1, 1

2 ), (2(1−ω), (1−ω)) (0, 0), (2(1−ω), 2ω)

(S,B) (0, 0), ((1−ω), ω) ( 1
2 , 1), ((1−ω), 2(1−ω)) ( 1

2 , 1), (2ω,ω) (1, 2), (2ω, 2(1−ω))
(S,S) (0, 1), (0, 1) ( 1

2 ,
1
2 ), (0, 0) ( 1

2 ,
1
2 ), (2, 1) (1, 0), (2, 0)

(13)

where, for the two pairs of payoff entries, the first pair is for Alice’s two types and
the second payoff pair is for Bob’s two types. It can be seen that when ω = 2

3 , for
instance, the strategy quadruples {(S,B), (S,S)} and {(B,B), (B,S)} corresponding
to the payoff quadruples (1, 2),

( 4
3 ,

2
3

)
, and (1, 1), (1, 2), respectively, are the pure

strategy Bayesian Nash equilibria [61,62].

3.1 Mixed-strategy version

Now, consider the mixed-strategy version of the game in which the players’ probabili-
ties of selecting B from the pure strategies B and S are given by the numbers p, q, p′,
and q ′ ∈ [0, 1] for Alice of type 1, Alice of type 2, Bob of type 1, and for Bob of type
2, respectively. The mixed-strategy payoffs for Alice’s and Bob’s two types can then
be found from Fig. 1 as

�A1(p; p′, q ′) = 1

2

(
p

1 − p

)T (
2 0
0 1

)(
p′

1 − p′
)

+ 1

2

(
p

1 − p

)T (
2 0
0 1

) (
q ′

1 − q ′
)
,

�A2(q; p′, q ′) = 1

2

(
q

1 − q

)T (
0 2
1 0

) (
p′

1 − p′
)

+ 1

2

(
q

1 − q

)T (
0 2
1 0

) (
q ′

1 − q ′
)
,
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�B1(p
′; p, q) = ω

(
p

1 − p

)T (
1 0
0 2

) (
p′

1 − p′
)

+ (1 − ω)

(
q

1 − q

)T (
1 0
0 2

)(
p′

1 − p′
)
,

�B2(q
′; p, q) = ω

(
p

1 − p

)T (
0 2
1 0

) (
q ′

1 − q ′
)

+ (1 − ω)

(
q

1 − q

)T (
0 2
1 0

)(
q ′

1 − q ′
)
, (14)

where T is for transpose, and the subscripts 1 and 2 under A and B refer to the respective
player’s type. Also, a semicolon is used to separate Alice’s and Bob’s variables. The
following Nash inequalities are then obtained

�A1(p
∗; p′∗, q ′∗)−� A1(p, p′∗, q ′∗) = ∂�A1

∂p
|∗ (p∗ − p)

=
{

3

2
(p′∗ + q ′∗)− 1

}
(p∗ − p) ≥ 0,

�A2(q
∗; p′∗, q ′∗)−� A2(q, p′∗, q ′∗) = ∂�A2

∂q
|∗ (q∗ − q)

= 2
{
1 − (p′∗ + q ′∗)

}
(q∗ − p) ≥ 0,

�B1(p
′∗; p∗, q∗)−�B1(p

′; p∗, q∗) = ∂�B1

∂p′ |∗ (p′∗ − p′)

= {
3ωp∗ + 3(1 − ω)q∗ − 2

}
(p′∗ − p′) ≥ 0,

�B2(q
′∗; p∗, q∗)−�B2(q

′; p∗, q∗) = ∂�B2

∂q ′ |∗ (q ′∗ − q ′)

= − {
3ωp∗ + 3(1 − ω)q∗

× (q ′∗ − q ′) ≥ 0, (15)

where the quadruple
{
(p∗, q∗), (p′∗, q ′∗)

}
is the Nash equilibrium strategy set,

which is indicated by the use of the asterisk label. From the inequalities (15), at
ω = 2

3 , for instance, the pure Bayesian Nash equilibria quadruples can be identified
as {(0, 1), (0, 0)} and {(1, 1), (1, 0)}, which correspond to the strategy quadruples
{(S,B), (S,S)} and {(B,B), (B,S)} as can be observed above. Also, it is observed
that

{
( 1

2 , 1),
( 2

3 , 0
)}

, for instance, is a mixed-strategy Bayesian Nash equilibrium at
which the players’ payoffs are obtained from Eq. (14) as

�A1

(
1

2
; 2

3
, 0

)
= 2

3
, �A2

(
1; 2

3
, 0

)
= 4

3
,

�B1

(
2

3
; 1

2
, 1

)
= 2

3
, �B2

(
0; 1

2
, 1

)
= 2 − ω. (16)
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4 Quantum probabilities in generalized Einstein–Podolsky–Rosen experiments

The above analysis of mixed-strategy Bayesian Nash equilibria assumes the underlying
probabilities to be factorizable. We now would like to know whether the outcome of the
Bayesian game from Fig. 1 is affected when the probabilities become non-factorizable.
For this, we would consider the set of non-factorizable quantum probabilities obtained
from generalized EPR experiments. The standard setting of such experiments [58,63–
71] involves a large number of runs. Two halves of an EPR pair originate from the same
source travelling in opposite directions. One-half is received by observer 1, whereas
observer 2 receives the other half. The two observers are space like separated and are
unable to communicate.

As Fig. 2 shows, the two directions refer to two possible directions along which
measurements can be taken, and in a run, the spin or polarization of the received half
is measured. We call D1 and D2 observer 1’s two directions and D′

1 and D′
2 observer

2’s two directions. In a run, each observer selects one direction and thus a directional
pair from (D1, D′

2), (D1, D′
1), (D2, D′

1), (D2, D′
2) is selected by the observers in that

run. The Stern–Gerlach type detectors are now rotated along these selected directions
to perform the quantum measurement. Independent of which directional pair is chosen
by the two observers, the outcome of the quantum measurement is either +1 or −1
along a measurement direction.

The relevant 16 probabilities are given [71] in the following,

Observer 1

D1
+1

−1

D2
+1

−1

Observer 2

D′
1

+1 −1
D′

2
+1 −1⎛

⎜⎜⎜⎜⎝

ε1 ε2

ε3 ε4

ε5 ε6
ε7 ε8

ε9 ε10

ε11 ε12

ε13 ε14

ε15 ε16

⎞
⎟⎟⎟⎟⎠, (17)

where, for instance, when the observer 1 selects the direction D2 and observer 2 selects
the direction D′

1, and the Stern–Gerlach detectors are rotated along these directions,
the probability that both experimental outcomes are −1 is ε12, and the probability that
the observer 1’s experimental outcome is +1 and observer 2’s experimental outcome
is −1 is given by ε10. “Appendix” described how the probabilities ε j are obtained
from a pure state of two qubits.

We note that there are 16 probabilities in the above setting of generalized EPR
experiments, and that the Fig. 1 giving a normal form representation of a Bayesian
game of incomplete information also has the same number of entries in it. This naturally
leads us to consider the situation in which the EPR probabilities are taken as the
underlying probabilities of the strategy pairs in the Bayesian game in Fig. 1.

Now, the EPR probabilities can become non-factorizable. As we see in the follow-
ing, this consideration motivates us to investigate how the outcome of the Bayesian
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Fig. 2 Setting for generalized Einstein–Podolsky–Rosen experiments. We associate Alice’s two directions
to the two types of Alice, i.e., D1 ∼Alice’s type 1 and D2 ∼Alice’s type 2. Similarly, D′

1 ∼Bob’s type 1
and D′

2 ∼Bob’s type 2

game is affected when the underlying probabilities of this game are obtained from
EPR experiments and can thus become non-factorizable.

4.1 Constraints on EPR probabilities and defining the payoff relations

The elements of the probability set ε j (1 ≤ j ≤ 16) are known to satisfy certain other
constraints that are described as follows. Note that when the directional pair (D1, D′

2)

is chosen for all runs of the experiment, the only possible outcomes are (+1,+1),
(+1,−1), (−1,+1), (−1,−1). The same is true for other directional pairs (D1, D′

1),

(D2, D′
1), (D2, D′

2). This leads to the normalization constraint

4∑
j=1

ε j = 1 =
8∑

j=5

ε j ,

12∑
j=9

ε j = 1 =
16∑

j=13

ε j . (18)

Also, in a particular run of the EPR experiment, the outcome of +1 or −1 (obtained
along the direction D1 or direction D2) is independent of whether the direction D′

1 or
the direction D′

2 is chosen in that run. Similarly, the outcome of +1 or −1 (obtained
along D′

1 or D′
2) is independent of whether the direction D1 or the direction D2 is

chosen in that run. These requirements, when translated in terms of the probability set
ε j , are expressed as

ε1+ε2 = ε5+ε6, ε1+ε3 = ε9+ε11, ε9+ε10 = ε13+ε14, ε5+ε7 = ε13+ε15,

ε3+ε4 = ε7+ε8, ε11+ε12 = ε15+ε16, ε2+ε4 = ε10+ε12, ε6+ε8 = ε14+ε16.

(19)

A convenient solution of the system (18, 19) is reported by Cereceda [71] to be
the one for which the set of probabilities υ = {ε2, ε3, ε6, ε7, ε10, ε11, ε13, ε16} is
expressed in terms of the remaining set of probabilities μ = {ε1, ε4, ε5, ε8, ε9, ε12,

ε14, ε15} that is given as
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ε2 = (1 − ε1 − ε4 + ε5 − ε8 − ε9 + ε12 + ε14 − ε15)/2,

ε3 = (1 − ε1 − ε4 − ε5 + ε8 + ε9 − ε12 − ε14 + ε15)/2,

ε6 = (1 + ε1 − ε4 − ε5 − ε8 − ε9 + ε12 + ε14 − ε15)/2,

ε7 = (1 − ε1 + ε4 − ε5 − ε8 + ε9 − ε12 − ε14 + ε15)/2,

ε10 = (1 − ε1 + ε4 + ε5 − ε8 − ε9 − ε12 + ε14 − ε15)/2,

ε11 = (1 + ε1 − ε4 − ε5 + ε8 − ε9 − ε12 − ε14 + ε15)/2,

ε13 = (1 − ε1 + ε4 + ε5 − ε8 + ε9 − ε12 − ε14 − ε15)/2,

ε16 = (1 + ε1 − ε4 − ε5 + ε8 − ε9 + ε12 − ε14 − ε15)/2.

(20)

This allows us to consider the elements of the set μ as independent variables.
In order to use the EPR setting to play the Bayesian game in Fig. 1, we call the

observers 1 and 2 the players Alice and Bob, respectively, of the Bayesian game. We
then associate one-half of the EPR pair to the player Alice and the other half to the
player Bob. As Alice and Bob have two directions each, we associate Alice’s two
directions to the two types of Alice, that is, D1 ∼Alice’s type 1 and D2 ∼Alice’s
type 2. Similarly, we associate Bob’s two directions to the two types of Bob, that is,
D′

1 ∼Bob’s type 1 and D′
2 ∼Bob’s type 2.

With these associations, and in view of the game in Fig. 1, in a run, each of the two
directions D1 and D2 is chosen with probability 1

2 . Similarly, the directions D′
1 and

D′
2 are chosen with probabilities ω and (1 − ω), respectively. In view of the payoff

relations (14) in the factorizable game, the players’ payoff relations in the game with
EPR probabilities can now be expressed as

�A1(ε j ) = 1

2
{(2)ε1 + (0)ε2 + (0)ε3 + (1)ε4}

+ 1

2
{(2)ε5 + (0)ε6 + (0)ε7 + (1)ε8} ,

�A2(ε j ) = 1

2
{(0)ε9 + (2)ε10 + (1)ε11 + (0)ε12}

+ 1

2
{(0)ε13 + (2)ε14 + (1)ε15 + (0)ε16} ,

�B1(ε j ) = ω {(1)ε1 + (0)ε2 + (0)ε3 + (2)ε4}
+ (1 − ω) {(1)ε9 + (0)ε10 + (0)ε11 + (2)ε12} ,

�B2(ε j ) = ω {(0)ε5 + (2)ε6 + (1)ε7 + (0)ε8}
+ (1 − ω) {(0)ε13 + (2)ε14 + (1)ε15 + (0)ε16} , (21)

where 1 ≤ j ≤ 16 and �A1(ε j ), �A2(ε j ), �B1(ε j ), and �B2(ε j ) are the payoffs
to Alice of type 1, Alice of type 2, Bob of type 1, and Bob of type 2, respectively,
expressed in terms of the probabilities ε j that are defined in (17).

Note that the payoffs (21) are reduced to the payoffs in the mixed-strategy game (14)
when the probability set ε j (1 ≤ j ≤ 16) is factorizable in terms of the probabilities
p, q, p′, q ′ ∈ [0, 1] as given by Eq. (22).
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5 Nash equilibrium inequalities in Bayesian game of Battle of Sexes with EPR
probabilities

So as to find the Nash equilibria when the probability set ε j (1 ≤ j ≤ 16) are non-
factorizable, we notice that when ε j are factorizable in terms of the probabilities p,
q, p′, and q ′, we can write

ε1 = pp′, ε2 = p(1 − p′), ε3 = (1 − p)p′, ε4 = (1 − p)(1 − p′),
ε5 = pq ′, ε6 = p(1 − q ′), ε7 = (1 − p)q ′, ε8 = (1 − p)(1 − q ′),
ε9 = qp′, ε10 = q(1 − p′), ε11 = (1 − q)p′, ε12 = (1 − q)(1 − p′),
ε13 = qq ′, ε14 = q(1 − q ′), ε15 = (1 − q)q ′, ε16 = (1 − q)(1 − q ′).

(22)

With this, the payoff relations (21) are reduced to the payoffs given by (14). Also, when
ε j are factorizable, and can be expressed in terms of p, q, p′, and q ′, they satisfy the
constraints given by Eqs. (18, 19) and p, q, p′, and q ′ can then be expressed in terms
of the probabilities ε j as follows

p = 1

2
(ε1 + ε2 + ε5 + ε6), q = 1

2
(ε9 + ε10 + ε13 + ε14),

p′ = 1

2
(ε1 + ε3 + ε9 + ε11), q ′ = 1

2
(ε5 + ε7 + ε13 + ε15).

(23)

From the set of inequalities (15), the expressions describing the Nash equilibria in the
factorizable game are

∂�A1

∂p
|∗ (p∗ − p) ≥ 0,

∂�A2

∂q
|∗ (q∗ − q) ≥ 0,

∂�B1

∂p′ |∗ (p′∗ − p′) ≥ 0,
∂�B2

∂q ′ |∗ (q ′∗ − q ′) ≥ 0.
(24)

To evaluate these inequalities, we use the relations (20) to express the payoff rela-
tions (21) in terms of the elements from the set μ as follows

�A1(ε j ) = 1

2
(2ε1 + ε4 + 2ε5 + ε8),

�A2(ε j ) = 1

4
(3 − ε1 + ε4 + ε5 − ε8 − 3ε9 − 3ε12 + 5ε14 + ε15),

�B1(ε j ) = ω(ε1 + 2ε4 − ε9 − 2ε12)+ (ε9 + 2ε12)

�B2(ε j ) = ω

2
(3 + ε1 − ε4 − 3ε5 − 3ε8 − ε9 + ε12 − 3ε14 − 3ε15)+ (2ε14 + ε15).

(25)

Similarly, using the relations (20), we express p, q, p′, q ′ in (23) in terms of the
elements from the set μ as
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p = 1

2
(1 + ε1 − ε4 + ε5 − ε8 − ε9 + ε12 + ε14 − ε15),

q = 1

2
(1 − ε1 + ε4 + ε5 − ε8 + ε9 − ε12 + ε14 − ε15),

p′ = 1

2
(1 + ε1 − ε4 − ε5 + ε8 + ε9 − ε12 − ε14 + ε15),

q ′ = 1

2
(1 − ε1 + ε4 + ε5 − ε8 + ε9 − ε12 − ε14 + ε15).

(26)

This allows us to use the chain rule to evaluate

∂�A1(ε j )

∂p
= ∂�A1(ε j )

∂ε1

∂ε1

∂p
+ ∂�A1(ε j )

∂ε4

∂ε4

∂p
+ ∂�A1(ε j )

∂ε5

∂ε5

∂p
+ ∂�A1(ε j )

∂ε8

∂ε8

∂p

+ ∂�A1(ε j )

∂ε9

∂ε9

∂p
+ ∂� A1(ε j )

∂ε12

∂ε12

∂p
+ ∂�A1(ε j )

∂ε14

∂ε14

∂p

+ ∂�A1(ε j )

∂ε15

∂ε15

∂p
, (27)

that gives
∂�A1 (ε j )

∂p = 2. Similarly, we obtain

∂�A2(ε j )

∂q
= 4,

∂�B1(ε j )

∂p′ = −2,
∂�B2(ε j )

∂q ′ = −2(2ω + 1). (28)

The inequalities (24) are now written as

2(p∗ − p) ≥ 0, 4(q∗ − q) ≥ 0,

− 2(p′∗ − p′) ≥ 0, −2(2ω + 1)(q ′∗ − q ′) ≥ 0,
(29)

giving

p∗ = 1

2
(ε∗1 + ε∗2 + ε∗5 + ε∗6) = 1, q∗ = 1

2
(ε∗9 + ε∗10 + ε∗13 + ε∗14) = 1,

p′∗ = 1

2
(ε∗1 + ε∗3 + ε∗9 + ε∗11) = 0, q ′∗ = 1

2
(ε∗5 + ε∗7 + ε∗13 + ε∗15) = 0,

(30)

as a unique Bayesian Nash equilibrium of the game. Using Eqs. (23, 26), we then
obtain ε∗2 = ε∗6 = ε∗10 = ε∗14 = 1 with all the rest of ε∗j being zeros. The players’
payoffs at this equilibrium are obtained as

�A1(ε
∗
j ) = 0, �A2(ε

∗
j ) = 2, �B1(ε

∗
j ) = 0, �B2(ε

∗
j ) = 2, (31)

presenting a dramatic contrast to what is the case when the underlying probabilities
are factorizable.
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6 Discussion

As is well known, Bell’s inequality presents stark difference between the classical and
quantum world. The CHSH form of Bell’s inequality can be expressed as a constraint
on probabilities without referring to the formalism and mathematical machinery of
quantum mechanics. Game theory is based on the theory of probability, and this sug-
gests that the quantum contents of quantum games can be given an expression that
only employ probabilities without referring to the formalism of quantum mechanics.
A probabilistic approach to quantum games is only a matter of perspective as the
quantum Bayesian game discussed in this paper can be physically implemented using
EPR-type experiments that result in non-factorizable probabilities.

Essentially, this paper discusses a physical implementation of a quantum Bayesian
game using EPR experiments. We find that these experiments provide a natural setting
for analyzing a quantum Bayesian game. Our analysis uses only probabilities as they
facilitate wider access to the area of quantum games. The physical realization of our
game is provided by actual EPR experiments where quantum mechanics makes the
difference and which can also be expressed in terms of probabilities only.

We study the game of Battle of Sexes with incomplete information that has both pure
and mixed Bayesian Nash equilibria. We investigate the situation when the underlying
probabilities of this game can become non-factorizable. As is known, the probabilities
in generalized EPR experiments can become non-factorizable and in certain cases can
maximally violate the corresponding CHSH version of Bell’s inequality. When the
quantum mechanical probabilities are factorizable, the game attains a classical inter-
pretation. However, when the probabilities are allowed to become non-factorizable,
we find that the solution of the game turns out to be entirely different and, in con-
trast to the classical game that has both pure and mixed Bayesian Nash equilibria, the
quantum game has a unique Bayesian Nash equilibrium.

A natural question to ask here is whether any set of probabilities that satisfies the
constraints (18,19) is physically realizable? Quantum mechanics is known to impose
further constraints, and one such constraint is given by the CHSH version of Bell’s
inequality [58,70,71]. This constraint states that the quantity � defined by

� = 2(ε1 + ε4 + ε5 + ε8 + ε9 + ε12 + ε14 + ε15 − 2) (32)

is restricted in the range
∣∣�QM

∣∣ ≤ 2
√

2 by the laws of quantum mechanics, and
the CHSH version of Bell’s inequality is violated in quantum mechanical experiments
when 2 < |�|. These constraints are imposed by physical realizations, and a maximum
value of � = 4 emerges when only nonnegative probabilities are considered. It is
known that this value is not physically realizable.

Our analysis for a Bayesian game of Battle of Sexes shows that when the under-
lying probabilities are obtained from generalized EPR experiments, and thus can be
non-factorizable, a unique Bayesian Nash equilibrium of the game emerges. This
equilibrium corresponds to ε∗2 = ε∗6 = ε∗10 = ε∗14 = 1 with the remaining ε∗j
being zeros. Substituting these values in Eq. (32) gives � = −2, i.e., the unique
Bayesian Nash equilibrium is obtained without violating the CHSH version of Bell’s
inequality.
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A particularly interesting situation would be when the violation of CHSH version
of Bell’s inequality leads to a new outcome of the game. Quantum mechanics is known
to put its own constraints on the allowed ranges of the variables (ε1 + ε2 + ε5 + ε6),

(ε9 + ε10 + ε13 + ε14), (ε1 + ε3 + ε9 + ε11), and (ε5 + ε7 + ε13 + ε15), as described in
Eq. (23), and they are different from those imposed by just not permitting probabilities
to have negative values. An important question would then be to ask whether this would
change or affect the outcome of the game. A consideration of Eqs. (29, 30) shows
that the conditions yielding the Bayesian Nash equilibrium are simply too strong to
be affected by extra constraints that quantum mechanics can impose on the allowed
ranges of the variables (ε1 +ε2 +ε5 +ε6), (ε9 +ε10 +ε13 +ε14), (ε1 +ε3 +ε9 +ε11),

and (ε5 + ε7 + ε13 + ε15). However, it is possible that for other Bayesian games, the
conditions giving the outcome are not so strong and it then would be worthwhile to
investigate this question further.

Acknowledgments We acknowledge helpful discussions with Andrew Allison.

7 Appendix

Using the standard notation, the set of 16 probabilities in (17) is obtained from a pure
state of two qubits

|ψ0〉 = α |00〉 + β |01〉 + γ |10〉 + δ |11〉 (33)

where α, β, γ, δ ∈ C and |α|2 + |β|2 + |γ |2 + |δ|2 = 1. We assume that observer
1’s directions D1 and D2 are along the unit vectors â and ĉ, respectively. Similarly,
observer 2’s directions D′

1 and D′
2 are along the unit vectors b̂ and d̂, respectively.

Without the loss of generality, we also assume that the unit vectors â = [ax , ay],
b̂ = [bx , by], ĉ = [cx , cy], and d̂ = [dx , dy] are all located in the x–y plane. Observer
1’s measurement operators are then σ̂ · â and σ̂ · ĉ, respectively. Similarly, observer
2’s measurement operators are σ̂ · b̂ and σ̂ · d̂, respectively. Here, σ̂ = [σx , σy, σz]
and σx , σy, σz are Pauli spin matrices.

Consider the probability ε1 in the (17) that corresponds to observers 1 and 2 mea-
suring along the directions â and b̂, respectively, and both obtaining the outcome +1.
For this situation, we require the eigenstates of the operators (σ̂ · â) and (σ̂ · b̂), with
the eigenvalue of +1 for both. These are found to be

|0〉+(ax +iay)|1〉√
2

and
|0〉+(bx +iby)|1〉√

2
,

respectively. From these, the eigenstate of the measurement operator (σ̂ · â)⊗ (σ̂ · b̂),
with the eigenvalue +1, is obtained as

|ψ1〉 = 1

2
(|00〉 + (bx + iby) |01〉 + (ax + iay) |10〉 + (ax + iay)(bx + iby) |11〉),

(34)

and the probability ε1 is then obtained from |〈ψ1| ψ0〉|2. For the pure state (33), this
becomes
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ε1 = 1

4

∣∣α + β(bx − iby)+ γ (ax − iay)+ δ(ax − iay)(bx − iby)
∣∣2
. (35)

Similarly, for the probability ε2, along with the eigenstate of (σ̂ ·â)with eigenvalue +1
obtained above, we require the eigenstate of the operator (σ̂ · b̂) with the eigenvalues
−1, which is

|0〉−(bx +iby)|1〉√
2

. From these, the eigenstate of the measurement operator

(σ̂ · â)⊗ (σ̂ · b̂), with the eigenvalue −1, is obtained as

|ψ2〉 = 1

2
(|00〉 − (bx + iby) |01〉 + (ax + iay) |10〉 − (ax + iay)(bx + iby) |11〉),

(36)

and, as before, the probability ε2 is then obtained from |〈ψ2| ψ0〉|2. For the pure state
(33), this becomes

ε2 = 1

4

∣∣α − β(bx − iby)+ γ (ax − iay)− δ(ax − iay)(bx − iby)
∣∣2
, (37)

and the remaining probabilities ε3, ε4 · · · ε16 can be obtained similarly.
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