Skip to main content

Advertisement

Log in

Adiabatic quantum optimization with qudits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Most realistic solid state devices considered as qubits are not true two-state systems. If the energy separation of the upper energy levels from the lowest two levels is not large, then these upper states may affect the evolution of the ground state over time and therefore cannot be neglected. In this work, we study the effect of energy levels beyond the lowest two energy levels on adiabatic quantum optimization in a device with a double-well potential as the basic logical element. We show that the extra levels can be modeled by adding additional ancilla qubits coupled to the original logical qubits, and that the presence of upper levels has no effect on the final ground state. We also study the influence of upper energy levels on the minimum gap for a set of 8-qubit spin glass instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Nakamura Y., Pashkin Yu.A., Tsai J.S.: Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature (London) 398, 786–788 (1999)

    Article  ADS  Google Scholar 

  3. Yamamoto T., Pashkin Yu.A., Astafiev O., Nakamura Y., Tsai J.S.: Demonstration of conditional gate operation using superconducting charge qubits. Nature (London) 425, 941–944 (2003)

    Article  ADS  Google Scholar 

  4. Vion D., Aassime A., Cottet A., Joyez P., Pothier H., Urbina C., Esteve D., Devoret M.H.: Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002)

    Article  ADS  Google Scholar 

  5. Steffen M., Ansmann M., Bialczak R.C., Katz N., Lucero E., McDermott R., Neeley M., Weig E.M., Cleland A.N., Martinis J.M.: Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  6. Berkley A.J., Xu H., Ramos R.C., Gubrud M.A., Strauch F.W., Johnson P.R., Anderson J.R., Dragt A.J., Lobb C.J., Wellstood F.C.: Entangled macroscopic quantum states in two superconducting qubits. Science 300, 1548–1550 (2003)

    Article  ADS  Google Scholar 

  7. Mooij J.E., Orlando T.P., Levitov L., Tian L., van der Wal C.H., Lloyd S.: Josephson persistent-current qubit. Science 285, 1036–1039 (1999)

    Article  Google Scholar 

  8. Grajcar M., Izmalkov A., Ilíchev E., Wagner Th., Oukhanski N., Hübner U., May T., Zhilyaev I., Hoenig H.E., Greenberg Ya. S., Shnyrkov V.I., Born D., Krech W., Meyer H.-G., van den Brink A.M., Amin M. H.S.: Low-frequency measurement of the tunneling amplitude in a flux qubit. Phys. Rev. B 69, 060501(R)–060503(R) (2004)

    Article  ADS  Google Scholar 

  9. Harris R., Johansson J., Berkley A.J., Johnson M.W., Lanting T., Han S., Bunyk P., Ladizinsky E., Oh T., Perminov I., Tolkacheva E., Uchaikin S., Chapple E., Enderud C., Rich C., Thom M., Wang J., Wilson B., Rose G.: Experimental demonstration of a robust and scalable flux qubit. Phys. Rev. B 81, 134510–134528 (2010)

    Article  ADS  Google Scholar 

  10. Johnson M.W., Amin M. H. S., Gildert S., Lanting T., Hamze F., Dickson N., Harris R., Berkley A.J., Johansson J., Bunyk P., Chapple E.M., Enderud C., Karimi K., Ladizinsky E., Ladizinsky N., Oh T., Perminov I., Rich C., Thom M.C., Tolkachev E., Truncik C. J.S., Uchaikin S., Wang J., Wilson B., Rose G.: Quantum annealing with manufactured spins. Nature 473, 194–198 (2011)

    Article  ADS  Google Scholar 

  11. Castellano M.G., Chiarello F., Carelli P., Cosmelli C., Mattioli F., Torrioli G.: Deep-well ultrafast manipulation of a SQUID flux qubit. New J. Phys. 12, 043047 (2010)

    Article  ADS  Google Scholar 

  12. Farhi E., Goldstone J., Gutmann S., Lapan J., Lundgren A., Preda D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Santoro G.E., Martoák R., Tosatti E., Car R.: Theory of quantum annealing of an Ising spin glass. Science 295, 2427–2430 (2002)

    Article  ADS  Google Scholar 

  14. Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. In: Proceedings of the 45th FOCS, pp. 42–51 (2004)

  15. Mizel A., Lidar D.A., Mitchell M.: Simple proof of equivalence between adiabatic quantum computation and the circuit model. Phys. Rev. Lett. 99, 070502–070505 (2007)

    Article  ADS  Google Scholar 

  16. Harris R., Johnson M.W., Lanting T., Berkley A.J., Johansson J., Bunyk P., Tolkacheva E., Ladizinsky E., Ladizinsky N., Oh T., Perminov I., Enderud C., Rich C., Uchaikin S., Thom M.C., Chapple E.M., Wang J., Wilson B., Amin M.H.S., Dickson N., Karimi K., Macready B., Truncik C.J.S., Rose G.: Experimental investigation of an eight qubit unit cell in a superconducting optimization processor. Phys. Rev. B 82, 024511–024525 (2010)

    Article  ADS  Google Scholar 

  17. Brooke J., Bitko D., Rosenbaum T.F., Aeppli G.: Quantum annealing of a disordered magnet. Science 284, 779–781 (1999)

    Article  ADS  Google Scholar 

  18. Brooke J., Rosenbaum T.F., Aeppli G.: Tunable quantum tunnelling of magnetic domain walls. Nature 413, 610–613 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amin, M.H.S., Dickson, N.G. & Smith, P. Adiabatic quantum optimization with qudits. Quantum Inf Process 12, 1819–1829 (2013). https://doi.org/10.1007/s11128-012-0480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0480-x

Keywords

Navigation