Skip to main content
Log in

Conditional phase shift for quantum CCNOT operation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We suggest the improvement of description methods for quantum phase gate implementation based on cavity QED. Qubits are encoded into two lowest Fock states. Three qubit phase transformation is resulted from the interaction between Rydberg atom and three modes of cavity electromagnetic field. Evolution of conditional field states after atom measurement is described by Kraus operators. We show that one of these operators corresponds to conditional evolution without quantum jumps and is very convenient for phase gate implementation. Also we describe cavity based generating EPR pair from certain initially disentangled state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ladd T.D., Jelezko F., Laflamme R., Nakamura Y., Monroe C., O’Brien J.L.: Quantum computers. Nature 464, 45–53 (2010)

    Article  ADS  Google Scholar 

  2. Kilin S.Ya.: Quantum information. Physics-Uspekhi 169(5), 507–527 (1999)

    Article  Google Scholar 

  3. Braunstein, S.L., Lo, H.-K., Kok, P. (eds.): Scalable Quantum Computers: Paving the Way to Realization. Wiley-VCH, Verlag, Berlin (2001)

  4. Bouwmeester, D., Ekert, A., Zeilinger, A. (eds): The Physics of Quantum Information. Springer, Berlin (2000)

    MATH  Google Scholar 

  5. Childs A.M., van Dam W.: Quantum algorithms for algebraic problems. Rev. Mod. Phys. 82, 1–52 (2010)

    Article  ADS  MATH  Google Scholar 

  6. Gisin N., Ribordy G., Tittel W., Zinden H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  7. Peres A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, Dordrecht (2002)

    Book  Google Scholar 

  8. DiVincenzo D.P.: The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000)

    Article  MATH  Google Scholar 

  9. O’Brien J.: Optical quantum computing. Science 318, 1567–1570 (2007)

    Article  ADS  Google Scholar 

  10. O’Brien J.L., Furusawa A., Vuc’kovic’ J.: Photonic quantum technologies. Nat. Photonics. 3, 687–695 (2009)

    Article  ADS  Google Scholar 

  11. Kok P., Munro W.J., Nemoto K., Ralph T.C., Dowling J.P., Milburn G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)

    Article  ADS  Google Scholar 

  12. Fleischhauer M., Imamoglu A., Marangos J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    Article  ADS  Google Scholar 

  13. Kok P.: Effects of self-phase-modulation on weak nonlinear optical quantum gates. Phys. Rev. A. 77, 013808 (2008)

    Article  ADS  Google Scholar 

  14. Pack M.V., Camacho R.M., Howell J.C.: Transients of the electromagnetically-induced-transparency-enhanced refractive Kerr nonlinearity. Phys. Rev. A. 76, 033835 (2007)

    Article  ADS  Google Scholar 

  15. Duan L.M., Kimble H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  16. Turchette Q.A., Hood C.J., Lange W., Mabuchi H., Kimble H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75(25), 4710–4713 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  17. Ottaviani C., Rebić S., Vitali D., Tombesi P.: Quantum phase-gate operation based on nonlinear optics: full quantum analysis. Phys. Rev. A. 73, 010301 (2006)

    Article  ADS  Google Scholar 

  18. O’Brien J.L., Pryde G.J., White A.G., Ralph T.C., Branning D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003)

    Article  ADS  Google Scholar 

  19. Raimond J.M., Brune M., Haroche S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Zubairy M.S., Kim M., Scully M.O.: Cavity-QED-based quantum phase gate. Phys. Rev. A. 68, 033820 (2003)

    Article  ADS  Google Scholar 

  21. Giovanetti V., Vitali D., Tombesi P., Ekert A.: Scalable quantum computation with cavity QED systems. Phys. Rev. A. 62(3), 032306 (2000)

    Article  ADS  Google Scholar 

  22. Chang J-T., Zubairy M.S.: Three-qubit phase gate based on cavity quantum electrodynamics. Phys. Rev. A. 77, 012329 (2008)

    Article  ADS  Google Scholar 

  23. Yong H., Nian-Quan J.: Efficient atomic one-qubit phase gate realized by a cavity QED and identical atoms system. Commun. Theor. Phys. 53(1), 97–99 (2010)

    Article  ADS  MATH  Google Scholar 

  24. Joshi A., Xiao M.: Cavity-QED-based unconventional geometric phase gates with bichromatic field modes. Phys. Lett. A. 359, 390–395 (2006)

    Article  ADS  Google Scholar 

  25. Kraus K.: States, Effects and Operations. Fundamental Notions of Quantum Theory. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Trifanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miroshnichenko, G.P., Trifanov, A.I. Conditional phase shift for quantum CCNOT operation. Quantum Inf Process 12, 1417–1428 (2013). https://doi.org/10.1007/s11128-011-0340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0340-0

Keywords

Navigation