Skip to main content

Advertisement

Log in

Microbial control of plant-parasitic nematodes: a five-party interaction

  • Original Paper
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Plant-parasitic nematodes cause significant economic losses to a wide variety of crops. Chemical control is a widely used option for plant-parasitic nematode management. However, chemical nematicides are now being reappraised in respect of environmental hazard, high costs, limited availability in many developing countries or their diminished effectiveness following repeated applications. This review presents progress made in the field of microbial antagonists of plant-parasitic nematodes, including nematophagous fungi, endophytic fungi, actinomycetes and bacteria. A wide variety of microorganisms are capable of repelling, inhibiting or killing plant-parasitic nematodes, but the commercialisation of these microorganisms lags far behind their resource investigation. One limiting factor is their inconsistent performance in the field. No matter how well suited a nematode antagonist is to a target nematode in a laboratory test, rational management decision can be made only by analysing the interactions naturally occurring among “host plant–nematode target–soil–microbial control agent (MCA)–environment”. As we begin to develop a better understanding of the complex interactions, microbial control of nematodes will be more fine-tuned. Multidisciplinary collaboration and integration of biological control with other control methods will␣also contribute to more successful control practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DBCP:

dibromochloropropane

EDB:

ethylene dibromide

MCA:

microbial control agent

PGPR:

plant growth-promoting rhizobacteria

References

  • Ahrén D, Tunlid A (2003) Evolution of parasitism in nematode-trapping fungi. J Nematol 35:194–197

    PubMed  Google Scholar 

  • Akhtar M (1997) Current options in integrated management of plant-parasitic nematodes. Integr Pest Manag Rev 2:187–197

    Google Scholar 

  • Akhtar M, Mahmood I (1996) Control of plant-parasitic nematodes with organic and inorganic amendments in agricultural soil. Appl Soil Ecol 4:243–247

    Google Scholar 

  • Alabouvette C (1999) Fusarium wilt suppressive soils: an example of disease suppressive soil. Australas Plant Path 28:57–64

    Google Scholar 

  • Ali-Hazmi AS, Ibrahim AAM, Abdul-Raziq AT (1993) Evaluation of a nematode-encapsulation fungi complex for control of Meloidogyne javanica on potato. Pak J Nematol 11:139–149

    Google Scholar 

  • Al-Hazmi AS, Schmitt DP, Sasser JN (1982) The effect of Arthrobotrys conoides on Meloidogyne incognita population densities in corn as influenced by temperature, fungus inoculum density, and time of fungus introduction in the soil. J Nematol 14:168–174

    PubMed  CAS  Google Scholar 

  • Ali NI, Siddiqui IA, Shaukat SS, Zaki MJ (2002) Nematicidal activity of some strains of Pseudomonas spp. Soil Biol Biochem 34:1051–1058

    CAS  Google Scholar 

  • Alphey TJW, Robertson WM, Lyon GD (1988) Rishitin a natural plant product with nematicidal activity. Revue Nématol 11:399–404

    CAS  Google Scholar 

  • Al-Rehiayani S, Hafez SL, Thornton M, Sundararaj P (1999) Effects of Pratylenchus neglectus, Bacillus megaterium and oil radish or rapeseed green manure on reproductive potential of Meloidogyne chitwoodi on potato. Nematropica 29:37–49

    Google Scholar 

  • Anver S, Khan AA, Alam MM (2001) Integrated management of root-knot and reniform nematodes with neem cake and biocontrol fungus Paecilomyces lilacinus on chickpea and pigeonpea. Arch Phytopath Pflanz 34:255–264

    Google Scholar 

  • Ashour EH, Mostafa FAM (1999) Effect of pollution with certain heavy metals on the growth of the nematophagous fungus, Arthrobotrys oligospora, trap formation, root-knot nematode infection and enzyme production. Pak J Biol Sci 2:515–522

    Article  Google Scholar 

  • Bae Y-S, Knudsen GR (2001) Influence of a fungus-feeding nematode on growth and biocontrol efficacy of Trichoderma harzianum. Phytopathology 91:301–306

    PubMed  CAS  Google Scholar 

  • Barker KR, Koenning SR (1998) Developing sustainable systems for nematode management. Annu Rev Phytopathol 36:165–205

    PubMed  CAS  Google Scholar 

  • Bourne JM, Kerry BR (1999) Effect of the host plant on the efficacy of Verticillium chlamydosporium as a biological control agent of root-knot nematodes at different nematode densities and fungal application rates. Soil Biol Biochem 31:75–84

    CAS  Google Scholar 

  • Bourne JM, Kerry BR, de Leij FAAM (1996) The importance of the host plant on the interaction between root-knot nematodes Meloidogyne spp. and␣the nematophagous fungus, Verticillium chlamydosporium Goddard. Biocontrol Sci Technol 6:539–548

    Google Scholar 

  • Butt TM, Jackson C, Magan N (2001) Fungal biocontrol agents-appraisal and recommendations. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential.CABI Publishing, Wallingford UK, pp 27–69

    Google Scholar 

  • Cabanillas E, Barker KR, Nelson LA (1989) Growth of isolates of Paecilomyces lilacinus and their efficacy in biocontrol of Meloidogyne incognita on tomato. J Nematol 21:164–172

    PubMed  CAS  Google Scholar 

  • Carneiro RMDG, Cayrol JC (1991) Relationship between inoculum density of the nematophagous fungus Paeeilomyces lilacinus and control of Meloidogyne arenaria on tomato. Revue Nématol 14:629–634

    Google Scholar 

  • Cayrol JC (1983) Biological control of Meloidogyne by Arthrobotrys irregularis (in French, with English abstract). Revue Nématol 6:265–273

    Google Scholar 

  • Chavarría-Carvajal JA, Rodríguez-Kábana R, Kloepper JW, Morgan-Jones G (2001) Changes in populations of microorganisms associated with organic amendments and benzaldehyde to control plant-parasitic nematodes. Nematropica 31:165–180

    Google Scholar 

  • Chen J, Abawi GS, Zuckerman BM (2000) Efficacy of Bacillus thuringiensis, Paecilomyces marquandii, and Streptomyces costaricanus with and without organic amendments against Meloidogyne hapla infecting lettuce. J Nematol 32:70–77

    PubMed  CAS  Google Scholar 

  • Chen SY, Chen FJ (2003) Fungal parasitism of Heterodera glycines eggs as influenced by egg age and pre-colonization of cysts by other fungi. J Nematol 35:271–277

    PubMed  CAS  Google Scholar 

  • Chen SY, Dickson DW, Mitchell DJ (1996) Pathogenicity of fungi to eggs of Heterodera glycines. J Nematol 28:148–158

    PubMed  CAS  Google Scholar 

  • Chen SY, Reese CD (1999) Parasitism of the nematode Heterodera glycines by the fungus Hirsutella rhossiliensis as influenced by crop sequence. J Nematol 31:437–444

    PubMed  CAS  Google Scholar 

  • Cooke RC (1962) Behavior of nematode-trapping fungi during decomposition of organic matter in soil. Trans Br Mycol Soc 45:314–320

    Article  Google Scholar 

  • Cronin D, Moenne-Loccoz Y, Dunne C, O’Gara F (1997) Inhibition of egg hatch of the potato cyst nematode Globodera rostochiensis by chitinase-producing bacteria. Eur J Plant Pathol 103:433–440

    Google Scholar 

  • Dabiré KR, Ndiaye S, Chotte J-L, Fould S, Diop MT, Mateille T (2005) Influence of irrigation on the distribution and control of the nematode Meloidogyne javanica by the biocontrol bacterium Pasteuria penetrans in the field. Biol Fertil Soils 41:205–211

    Google Scholar 

  • Davies KG, Fargette M, Balla G, Daudi A, Duponnois R, Gowen SR, Mateille T, Phillips MS, Sawadogo A, Trivino C, Vouyoukalou E, Trudgill DL (2001) Cuticle heterogeneity as exhibited by Pasteuria spore attachment is not linked to the phylogeny of parthenogenetic root-knot nematodes (Meloidogyne spp.). Parasitology 122:111–120

    PubMed  Google Scholar 

  • de la Peña E, Echeverría SR, van der Putten WH, Freitas H, Moens M (2006) Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol 169:829–840

    PubMed  Google Scholar 

  • Dickson DW, Mitchell DJ (1985) Evaluation of Paecilomyces lilacinus as a biocontrol agent of Meloidogyne javanica on tabacco. J Nematol 17:519

    Google Scholar 

  • Diedhiou PM, Hallmann J, Oerke E-C, Dehne H-W (2003) Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 13:199–204

    PubMed  CAS  Google Scholar 

  • Doran JW, Sarrantonio M, Liebig MA (1996) Soil health and sustainability. Adv Agron 56:1–54

    CAS  Google Scholar 

  • Dube B, Smart GC Jr (1987) Biological control of Meloidogyne incognita by Paecilomyces lilacinus and Pasteuria penetrans. J Nematol 19:222–227

    PubMed  CAS  Google Scholar 

  • Duponnois R, Bâ AM, Mateille T (1999) Beneficial effects of Enterobacter cloacae and Pseudomonas mendocina for biocontrol of Meloidogyne incognita with the endospore-forming bacterium Pasteuria penetrans. Nematology 1:95–101

    Google Scholar 

  • Duponnois R, Mateille T, Gueye M (1995) Biological characteristics and effects of two strains of Arthrobotrys oligospora from Senegal on Meloidogyne species parasitizing tomato plants. Biocontrol Sci Technol 5:517–525

    Google Scholar 

  • Duponnois R, Mateille T, Sene V, Sawadogo A, Fargette M (1996) Effect of different West african species and strains of Arthrobotrys nematophagous fungi on Meloidogyne species. Entomophaga 41:475-483

    Google Scholar 

  • Eapen SJ, Beena B, Ramana KV (2005) Tropical soil microflora of spice-based cropping systems as potential antagonists of root-knot nematodes. J Invertebr Pathol 88:218–225

    PubMed  Google Scholar 

  • El-Nagdi WMA, Youssef MMA (2004) Soaking faba bean seed in some bio-agents as prophylactic treatment for controlling Meloidogyne incognita root-knot nematode infection. J Pest Sci 77:75–78

    Google Scholar 

  • Ellis RJ, Timms-Wilson M, Bailey MJ (2000) Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environ Microbiol 2:274–284

    PubMed  CAS  Google Scholar 

  • Elsen A, Baimey H, Swennen R, De Waele D (2003) Relative mycorrhizal dependency and mycorrhiza–nematode interaction in banana cultivars (Musa spp.) differing in nematode susceptibility. Plant Soil 256:303–313

    CAS  Google Scholar 

  • Eren J, Pramer D (1978) Growth and activity of the nematode-trapping fungus Arthrobotrys conoides in soil. In: Loutit MW, Miles JAR (eds) Microbial ecology. Springer-Verlag, Berlin, pp 121–127

    Google Scholar 

  • Esnard J, Marban-Mendoza N, Zuckerman BM (1998) Effects of three microbial broth cultures and an organic amendment on growth and populations of free living and plant-parasitic nematodes on banana. Eur J Plant Pathol 104:457–463

    Google Scholar 

  • Fernández C, Rodríguez-Kábana R, Warrior P, Kloepper JW (2001) Induced soil suppressiveness to a root-knot nematode species by a nematicide. Biol Control 22:103–114

    Google Scholar 

  • Field TK, Riggs RD, Robins RT (1996) In vitro effects of cyst associated bacteria on growth of the fungal hyphomycete (ARF18) a biocontrol agent for Heterodera glycines. Nematropica 26:263

    Google Scholar 

  • Forge T, Muehlchen A, Hackenberg C, Neilsen G, Vrain T (2001) Effects of preplant inoculation of apple (Malus domestica Borkh.) with arbuscular mycorrhizal fungi on population growth of the root-lesion nematode, Pratylenchus penetrans. Plant Soil 236:185–196

    CAS  Google Scholar 

  • Friman E (1993) UV inhibition of the nematode infection process in Arthrobotrys oligospora and Dactylaria candida. J Gen Microbiol 139:2841–2847

    CAS  Google Scholar 

  • Gaspard JT, Mankau R (1987) Density-dependence and host-specificity of the nematode-trapping fungus Monacrosporium elipsosporum. Revue Nématol 10:241–246

    Google Scholar 

  • Gray (1985) Ecology of nematophagous fungi: effect of soil moisture, organic matter, pH and nematode density on distribution. Soil Biol Biochem 17:499–507

    Google Scholar 

  • Grewal PS, Lewis ED, Venkatachari S (1999) Allelopathy: a possible mechanism of suppression of plant-parasitic nematodes by entomopathogenic nematodes. Nematology 1:735–743

    Google Scholar 

  • Hackenberg C, Muehlchen A, Forge T, Vrain T (2000) Pseudomonas chlororaphis strain Sm3, bacterial antagonist of Pratylenchus penetrans. J Nematol 32:183–189

    PubMed  CAS  Google Scholar 

  • Hallmann J, Sikora RA (1996) Toxicity of fungal endophyte secondary metabolites to plant parasitic nematodes and soil-borne plant pathogenic fungi. Eur J Plant Pathol 102:155–162

    CAS  Google Scholar 

  • Holland RJ, Williams KL, Khan A (1999) Infection of Meloidogyne javanica by Paecilomyces lilacinus. Nematology 1:131–139

    Google Scholar 

  • Hu KJ, Li JX, Webster JM (1999) Nematicidal metabolites produced by Photorhabdus luminescens (Enterobacteriaceae), bacterial symbiont of entomopathogenic nematodes. Nematology 1:457–469

    CAS  Google Scholar 

  • Huang XW, Tian BY, Niu QH, Yang JK, Zhang LM, Zhang KQ (2005) An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res Microbiol 156:719–727

    PubMed  CAS  Google Scholar 

  • Hyakumachi M, Kubota M (2004) Fungi as plant growth promoter and disease suppressor. In: Arora DK, Bridge PD, Bhatnagar D (eds) Fungal biotechnology in agricultural, food, and environmental applications. Marcel Dekker Inc., New York, NY, pp 101–110

    Google Scholar 

  • Ibrahim AAM (1994) Effect of cadusafos, Paecilomyces lilacinus and Nemout on reproduction and damage potential of Meloidogyne javanica. Pak J Nematol 12:141–147

    Google Scholar 

  • Insunza V, Alstrom S, Eriksson KB (2002) Root bacteria from nematicidal plants and their biocontrol potential against trichodorid nematodes in potato. Plant Soil 241:271–278

    CAS  Google Scholar 

  • Irving F, Kerry BR (1986) Variation between strains of the nematophagous fungus, Verticillium chlamydosporium Goddard. II. Factors affecting parasitism of cyst nematode eggs. Nematologica 32:474–485

    Article  Google Scholar 

  • Jacobs H, Gray SN, Crump DH (2003) Interactions between nematophagous fungi and consequences for their potential as biological agents for the control of potato cyst nematodes. Mycol Res 107:47–56

    PubMed  Google Scholar 

  • Jacq VA, Fortuner R (1979) Biological control of rice nematodes using sulphate reducing bacteria. Revue Nématol 2:41–50

    Google Scholar 

  • Jaffee BA (1992) Population biology and biological control of nematodes. Can J Microbiol 38:359–364

    PubMed  CAS  Google Scholar 

  • Jaffee BA (1999) Enchytraeids and nematophagous fungi in tomato fields and vineyards. Phytopathology 89:398–406

    PubMed  CAS  Google Scholar 

  • Jaffee BA, Ferris H, Stapleton JJ, Norton MVK, Muldoon AE (1994) Parasitism of nematodes by the fungus Hirsutella rhossiliensis as affected by certain organic amendments. J Nematol 26:152–161

    PubMed  CAS  Google Scholar 

  • Jaffee BA, Gaspard JT, Ferris H (1989) Density-dependent parasitism of the soil-borne nematode Criconemella xenoplax by the nematophagous fungus Hirsutella rhossiliensis. Microb Ecol 17:193–200

    Google Scholar 

  • Jaffee BA, McInnis TM (1991) Sampling strategies for detection of density-dependent parasitism of soil-borne nematodes by nematophagous fungi. Revue Nématol 14:147–150

    Google Scholar 

  • Jaffee BA, Muldoon AE, Didden WAM (1997) Enchytraeids and nematophagous fungi in soil microcosms. Biol Fertil Soils 25:382–388

    Google Scholar 

  • Jaffee BA, Zasoski RJ (2001) Soil pH and the activity of a pelletized nematophagous fungus. Phytopathology 91:324–330

    PubMed  CAS  Google Scholar 

  • Jagdale GB, Grewal PS (2002) Identification of alternatives for the management of foliar nematodes in floriculture. Pest Manag Sci 58:451-458

    PubMed  CAS  Google Scholar 

  • Jansson H-B, Jeyaprakash A, Zuckerman BM (1985) Control of root-knot nematodes on tomato by the endoparasitic fungus Meria coniospora. J Nematol 17:327–329

    PubMed  CAS  Google Scholar 

  • Jansson H-B, Lopez-Llorca LV (2001) Biology of nematophagous fungi. In: Misra JK, Horn BW (eds) Trichomycetes and other fungal groups: Robert W. Lichtwardt commemoration volume. Science Publishers Inc., Enfield, NH, pp 144–173

    Google Scholar 

  • Jansson H-B, Tunlid A, Nordbring-Hertz B (1997) Nematodes. In: Anke T (eds) Fungal Biotechnology. Chapman and Hall, Weinheim, Germany, pp 38–48

    Google Scholar 

  • Jatala P (1986) Biological control of plant-parasitic nematodes. Annu Rev Phytopathol 24:453–489

    Google Scholar 

  • Jenkins NE, Grzywacz D (2000) Quality control of fungal and viral biocontrol agents-assurance of product performance. Biocontrol Sci Technol 10:753–777

    Google Scholar 

  • Johnson AW, Burton GW, Sumner DR, Handoo Z (1997) Coastal bermudagrass rotation and fallow for management of nematodes and soilborne fungi on vegetable crops. J Nematol 29:710–716

    PubMed  CAS  Google Scholar 

  • Jonathan EI, Barker KR, Abdel-Alim FF, Vrain TC, Dickson DW (2000) Biological control of Meloidogyne incognita on tomato and banana with rhizobacteria, actinomycetes, and Pasteuria penetrans. Nematropica 30:231–240

    Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–441

    PubMed  CAS  Google Scholar 

  • Kim DG, Riggs RD (1995) Efficacy of the nematophagous fungus ARF18 in alginate-clay pellet formulations against Heterodera glycines. J Nematol 27(4S):602–608

    PubMed  CAS  Google Scholar 

  • Kimpinski J, Sturz AV (2003) Managing crop root zone ecosystems for prevention of harmful and encouragement of beneficial nematodes. Soil Till Res 72:213–221

    Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: White JF, Bacon CW (eds) Microbial Endophytes. Marcel Dekker, Inc., New York, NY, pp 199–235

    Google Scholar 

  • Kornis GI (1994) Avermectins and milbemycins. In: Godfrey CRA (eds) agrochemicals from natural products. Marcel Dekker, Inc., New York, NY, pp 215–255

    Google Scholar 

  • Kratochvil RJ, Sardanelli S, Everts K, Gallagher E (2004) Evaluation of crop rotation and other cultural practices for management of root-knot and lesion nematodes. Agron J 96:1419–1428

    Article  Google Scholar 

  • Kulkarni SM, Sangita D (2000) Cultivation of Hohenbuehelia atrocaerulea (Fr.) Sing. (Agaricomycetideae): a mushroom with nematicidal potential. Int J Med Mushrooms 2:161–163

    Google Scholar 

  • Lai YX, Li GP, Wang YH, Zhang YF, Zhou YP (2005) Trials on killing beetles of Monochamus alternatus and controlling pine wilt disease with Manic-EC and mixtures of Beauveria bassiana × Verticillium lecanii (in Chinese, with English abstract). J Jiangsu For Sci Technol 32:4–7

    Google Scholar 

  • Lay EC, Lara J, Jatala P, Gonzales F (1982) Preliminary evaluation of Paecilomyces lilacinus as a biological control of the root-knot nematode, Meloidogyne incognita, in industrial tomatoes. Nematropica 12:154

    Google Scholar 

  • Liu ZM, Qin BX, Cai JH, Chen YH, Huang FX, Zhu GN, Lu XH (2005) The effects of soil factors on bacterium B2’s control of Meloidogyne incognita (in Chinese, with English abstract). J Huazhong Agric Univ 24:161–164

    Google Scholar 

  • Lohmann U, Sikora RA, Hofer M (1989) Influence of phosphoiipids on growth, sporulation and virulence of the endoparasitic fungi Drechmeria coniospora, Verdcillium balanoides and Harposporium anguillulae in liquid culture. J Phytopathol 125:139–147

    CAS  Google Scholar 

  • López-Llorca LV, Boag B (1990) Inhibition of Verticillium suchlasporium and other nematophagous fungi by bacteria colonising Heterodera avenae females. Nematol Mediterr 18:233–237

    Google Scholar 

  • López-Llorca LV, Duncan GH (1991) Effects of fungal parasites on cereal cyst nematodes (Heterodera avenae Woll.) from naturally infested soil—a scanning electron microscopy study. Can J Microbiol 37:218–225

    Article  Google Scholar 

  • López-Llorca LV, Olivares-Bernavéu C (1997) Growth inhibition of nematophagous and entomopathogenic fungi by leaf litter and soil containing phenols. Mycol Res 101:691–697

    Google Scholar 

  • Luo H, Mo MH, Huang XW, Li X, Zhang KQ (2004) Coprinus comatus: a basidiomycete fungus forms novel spiny structures and infects nematode. Mycologia 96:1218–1225

    Google Scholar 

  • Mankau R (1980) Biological control of nematode pests by natural enemies. Annu Rev Phytopathol 18:415–440

    Google Scholar 

  • Mankau R, Prasad N (1977) Infectivity of Bacillus penetrans in plant-parasitic nematodes. J Nematol 9:40–45

    PubMed  CAS  Google Scholar 

  • Mateille T, Duponnois R, Diop MT (1995) Influence of abiotic soil factors and the host plant on the infection of phytoparasitic nematodes of the genus Meloidogyne by the actinomycete parasitoid Pasteuria penefrans (in French, with English abstract). Agronomie 15:581–589

    Google Scholar 

  • McGovern RJ, McSorley R, Bell ML (2002) Reduction of landscape pathogens in Florida by soil solarization. Plant Dis 86:1388–1395

    Google Scholar 

  • Meyer SLF, Roberts DP (2002) Combinations of biocontrol agents for management of plant-parasitic nematodes and soilborne plant-pathogenic fungi. J Nematol 34:1–8

    PubMed  Google Scholar 

  • Meyer SLF, Roberts DP, Chitwood DJ, Carta LK, Lumsden RD, Mao WL (2001) Application of Burkholderia cepacia and Trichoderma virens, alone and in combinations, against Meloidogyne incognita on bell pepper. Nematropica 31:75–86

    Google Scholar 

  • Mian IH, Godoy G, Shelby RA, Rodríguez-Kábana R, Morgan-Jones G (1982) Chitin amendments for control of Meloidogyne arenaria in infested soil. Nematropica 12:71–84

    Google Scholar 

  • Mittal N, Saxena G, Mukerji KG (1995) Integrated control of root-knot disease in three crop plants using chitin and Paecilomyces lilacinus. Crop Prot 14:647–651

    Google Scholar 

  • Mondal SN, Hyakumachi M (1998) Carbon loss and germinability, viability, and virulence of chlamydospores of Fusarium solani f. sp. phaseoli agter exposure to soil at different pH levels, temperatures, and matric potentials. Phytopathology 88:148–155

    PubMed  CAS  Google Scholar 

  • Monfort E, Lopez-Llorca LV, Jansson H-B, Salinas J, Park JO, Sivasithamparam K (2005) Colonisation of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaeumannomyces graminis var. tritici and development of root-rot. Soil Biol Biochem 37:1229–1235

    CAS  Google Scholar 

  • Mukerji KG, Chamola BP, Singh J (2000) Preface. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer Academic/Plenum Publishers, New York, NY, VII pp

    Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Pertramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Google Scholar 

  • Neipp PW, Becker JO (1999) Evaluation of biocontrol activity of rhizobacteria from Beta vulgaris against Heterodera schachtii. J Nematol 31:54–61

    PubMed  CAS  Google Scholar 

  • Oka Y, Nacar S, Putievsky E, Ravid U, Yaniv Z, Spiegel Y (2000) Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology 90:710–715

    CAS  PubMed  Google Scholar 

  • Okada H, Harada H, Kadota I (2005) Fungal-feeding habits of six nematode isolates in the genus Filenchus. Soil Biol Biochem 37:1113–1120

    CAS  Google Scholar 

  • Pandey R, Sikora RA (2000) Influence of aqueous extracts of organic matter on the sensitivity of Heterodera schachtiiSchmidt and Meloidogyne incognita (Kofoid and White) Chitwood eggs to Verticillium chlamydosporium Goddard infection (in German, with English abstract). Zeitsch Pflanzenkr Pflanzensch 107:494–497

    Google Scholar 

  • Persmark L, Marban-Mendoza N, Jansson H-B (1995) Nematophagous fungi from agricultural soils of Central America. Nematropica 2:117–124

    Google Scholar 

  • Persson C, Jansson H-B (1999) Rhizosphere colonization and control of Meloidogyne spp. by nematode-trapping fungi. J Nematol 31:164–171

    PubMed  CAS  Google Scholar 

  • Pinochet J, Calvet C, Camprubí, Fernández C (1996) Interactions between migratory endoparasitic nematodes and arbuscular mycorrhizal fungi in perennial crops: a review. Plant Soil 185:183–190

    CAS  Google Scholar 

  • Ploeg AT (2002) Effects of selected marigold varieties on root-knot nematodes and tomato and melon yields. Plant Dis 86:505–508

    Google Scholar 

  • Poinar GO Jr, Georgis R (1994) Biological control for plant-parasitic nematodes attacking turf and ornamentals. In: Leslie AR (eds) Handbook of integrated pest management for turf and ornamentals. CRC Press, Boca Raton, FL, pp 491–501

    Google Scholar 

  • Rao MS, Kerry BR, Gowen SR, Bourne JM, Reddy PP (1997) Management of Meloidogyne incognita in tomato nurseries by integration of Glomus deserticola with Verticillium chlamydosporium. J Plant Dis Prot 104:419–422

    Google Scholar 

  • Reynolds LB, Potter JW, Ball-Coelho BR (2000) Crop rotation with Tagetes sp. is an alternative to chemical fumigation for control of root-lesion nematodes. Agron J 92:957–966

    Article  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press Inc., Orlando FL, 422 pp

    Google Scholar 

  • Roberts PA, Thomason IJ, McKinney HE (1981) Influence of nonhosts, crucifers, and fungal parasites on field populations of Heterodera schochtii. J Nematol 13:164–171

    PubMed  CAS  Google Scholar 

  • Rosenzweig WD, Pramer D (1980) Influence of cadmium, zinc, and lead on growth, trap formation, and collagenase activity of nematode-trapping fungi. Appl Environ Microb 40:694–696

    CAS  Google Scholar 

  • Ryan A, Jones P (2004) The effect of mycorrhization of potato roots on the hatching chemicals active towards the potato cyst nematodes,Globodera pallida and G. rostochiensis. Nematology 6:335–342

    Google Scholar 

  • Samac DA, Kindel LL (2001) Suppression of the root-lesion nematode (Pratylenchus penetrans) in alfalfa (Medicago sativa) by Streptomyces spp. Plant Soil 235:35–44

    CAS  Google Scholar 

  • Santos MAD, Ferraz S, Muchovej JJ (1992) Evaluation of 20 species of fungi from Brazil for biocontrol of Meloidogyne incognita race 3. Nematropica 22:183–192

    Google Scholar 

  • Sasser JN, Freckman DW (1987) A world perspective on nematology: the role of the society. In: Veech JA, Dickson DW (eds) Vistas on nematology: a commemoration of the twenty-fifth anniversary of the society of nematologists. Society of Nematologists, Lakeland, FL, pp 7–14

    Google Scholar 

  • Sasser JN, Uzzell G Jr (1991) Control of the soybean cyst nematode by crop rotation in combination with a nematicide. J Nematol 23:344–347

    PubMed  CAS  Google Scholar 

  • Sayre RM, Walter DE (1991) Factors affecting the efficacy of natural enemies of nematodes. Annu Rev Phytopathol 29:149–166

    Google Scholar 

  • Schwarz M, Kopcke B, Weber RWS, Sterner O, Anke H (2004) 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 65:2239–2245

    PubMed  CAS  Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S (2001) Suppression of the root rot–root knot disease complex by Pseudomonas aeruginosa in tomato: the influence of inoculum density, nematode populations, moisture and other plant-associated bacteria. Plant Soil 237:81–89

    CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2002) Mixtures of plant disease suppressive bacteria enhance biological control of multiple tomato pathogens. Biol Fertil Soils 36:260-268

    Google Scholar 

  • Siddiqui IA, Shaukat SS (2003) Plant species, host age and host genotype effects on Meloidogyne incognita biocontrol by Pseudomonas fluorescens strain CHA0 and its genetically-modified derivatives. J Phytopathol 151:231–238

    Google Scholar 

  • Siddiqui ZA (2004) Effects of plant growth promoting bacteria and composed organic fertilizers on the reproduction of Meloidogyne incognita and tomato growth. Bioresour Technol 95:223–227

    PubMed  CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (1995) Role of plant symbionts in nematode management: a review. Bioresour Technol 54:217–226

    CAS  Google Scholar 

  • Sikora RA (1992) Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Annu Rev Phytopathol 30:245–270

    Google Scholar 

  • Soler-Serratosa A, Kokalis-Burelle N, Rodríguez-Kábana R, Weaver CF, King PS (1996) Allelochemicals for control of plant-parasitic nematodes.1. In vivo nematicidal efficacy of thymol and thymol benzaldehyde combinations. Nematropica 26:57–71

    Google Scholar 

  • Sorbo GD, Marziano F, D’Errico FP (2003) Diffusion and effectiveness of the nematophagous fungus Hirsutella rhossiliensis in control of the cyst nematode Heterodera daverti under field conditions. J Plant Pathol 85:219–221

    Google Scholar 

  • Sorribas FJ, Ornat C, Galeano M, Verdejo-Lucas S (2003) Evaluation of a native and introduced isolate of Pochonia chlamydosporia against Meloidogyne javanica. Biocontrol Sci Technol 13:707–714

    Google Scholar 

  • Stirling GR, Licastro KA, West LM, Smith LJ (1998) Development of commercially acceptable formulations of the nematophagous fungus Verticillium chlamydosporium. Biol Control 11:217–223

    Google Scholar 

  • Stirling GR, Wachtel MF (1980) Mass production of Bacillus penetrans for the biological control of root-knot nematodes. Nematologica 26:308–312

    Article  Google Scholar 

  • Strobel NE, Hussey RS, Roncadori RW (1982) Interactions of vesicular–arbuscular mycorrhizal fungi, Meloidogyne incognita, and soil fertility on peach. Phytopathology 72:690–694

    Article  Google Scholar 

  • Sturz AV, Kimpinski J (2004) Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil 262:241–249

    CAS  Google Scholar 

  • Stutzman-Engwall K, Conlon S, Fedechko R, McArthur H, Pekrun K, Chen Y, Jenne S, La C, Trinh N, Kim S, Zhang YX, Fox R, Gustafsson C, Krebber A (2005) Semi-synthetic DNA shuffling of aveC leads to improved industrial scale production of doramectin by Streptomyces avermitilis. Metab Eng 7:27–37

    PubMed  CAS  Google Scholar 

  • Sun SH, Zhou L, Xia ZY, Zhao YH, Duan LC (2002) Study of microorganic nematicide to control tobacco root-knot nematodes (in Chinese, with English abstract). Acta Tabacaria Sin 8:30–33

    Google Scholar 

  • Talavera M, Itou K, Mizukubo T (2001) Reduction of nematode damage by root colonization with arbuscular mycorrhiza (Glomus spp.) in tomato-Meloidogyne incognita (Tylenchida: Meloidogynidae) and carrot-Pratylenchus penetrans (Tylenchida: Pratylenchidae) pathosystems. Appl Entomol Zool 36:387–392

    Google Scholar 

  • Talavera M, Itou K, Mizukubo T (2002) Combined application of Glomus sp. and Pasteuria penetrans for reducing Meloidogyne incognita (Tylenchida: Meloidogynidae) populations and improving tomato growth. Appl Entomol Zool 37:61–67

    Google Scholar 

  • Tedford EC, Jaffee JA, Muldoon AE (1994) Variability among isolates of the nematophagous fungus Hirsutella rhossiliensis. Mycol Res 98:1127–1136

    Google Scholar 

  • Timper P, Brodie BB (1993) Infection of Pratylenchus penetrans by nematode-pathogenic fungi. J Nematol 25:297–302

    PubMed  CAS  Google Scholar 

  • Toyota K, Ritz K, Young IA (1996) Microbiological factors affecting colonization of soil aggregates by Fusarium oxysporium f. sp. raphani. Soil Biol Biochem 28:1513–1521

    CAS  Google Scholar 

  • Twomey U, Warrior P, Kerry BR, Perry RN (2000) Effects of the biological nematicide, DiTera, on hatching of Globodera rostochiensis and G. pallida. Nematology 2:355–362

    CAS  Google Scholar 

  • van den Boogert PHJF, Velvis H, Ettema CH, Bouwman LA (1994) The role of organic matter in the population dynamics of the endoparasitic nematophagous fungus Drechmeria coniospora in microcosms. Nematologica 40:249–257

    Article  Google Scholar 

  • Verdejo S, Jaffee BA (1988) Reproduction of Pasteuria penetrans in a tissue system containing Meloidogyne javanica and Agrobacterium rhizogenes transformed roots. Phytopathology 78:1284–1286

    Google Scholar 

  • Viaene NM, Abawi GS (1998) Fungi parasitic on juveniles and egg masses of Meloidogyne hapla in organic soils from New York. J Nematol 30(4S):632–638

    PubMed  CAS  Google Scholar 

  • Waceke JW, Waudo SW, Sikora R (2001) Suppression of Meloidogyne hapla by arbuscular mycorrhiza fungi (AMF) on pyrethrum in Kenya. Int J Pest Manage 47:135–140

    Google Scholar 

  • Walia RK, Vats R (2000) Fungal antagonists of phytonematodes. In: Upadhyay RK, Mukerji KG, Chamola BP (eds) Crop diseases, weeds, and nematodes. Kluwer Academic/Plenum Publishers, New York, NY, pp 155–172

    Google Scholar 

  • Wang B, Liu XZ (2004) Mass production and formulation of nematode-antagonistic microbes. In: Liu XZ, Zhang KQ, Li TF (eds) Biological control of plant-parasitic nematodes (in Chinese, with English abstract). China Science and Technology Press, Beijing, P.R.China, pp 285–297

    Google Scholar 

  • Wang K-H, Sipes BS, Schnitt DP (2001) Suppression of Rotylenchulus reniformis by Crotalaria juncea, Brassica napus, and Tagetes erecta. Nematropica 31:237–251

    Google Scholar 

  • Wang K-H, Sipes BS, Schmitt DP (2003) Intercropping cover crops with pineapple for the management of Rotylenchulus reniformis. J Nematol 35:39–47

    PubMed  Google Scholar 

  • Wang LF, Yang BJ, Li CD (1999) Evaluation of pathogenicity of parasitic fungi to root-knot nematodes (in Chinese, with English abstract). Sci Silvae Sin 35:41–47

    Google Scholar 

  • Watson AG, Ford EJ (1972) Soil fungistasis—a reappraisal. Annu Rev Phytopathol 10:327–346

    Google Scholar 

  • West CP, Izekor E, Oosterhuis DM, Robbins R (1988) The effect of Acremonium coenophialum on the growth and nematode infestation of tall fescue. Plant Soil 112:3–6

    Google Scholar 

  • Woodward JE, Walker NR, Dillwith JW, Zhang HL, Martin DL (2005) The influence of fungicides on Arthrobotrys oligospora in simulated putting green soil. Ann Appl Biol 146:115–121

    CAS  Google Scholar 

  • Xing LJ, Chen DL, Liu WZ, Duan YX (2002) Influence of some ions on biocontrol system of soybean cyst nematode (in Chinese, with English abstract). Chinese J Biol Control 18:1–5

    Google Scholar 

  • Yin B, Valinsky L, Gao XB, Becker JO, Borneman J (2003) Bacterial rRNA genes associated with soil suppressiveness against the plant-parasitic nematode Heterodera schachtii. Appl Environ Microbiol 69:1573–1580

    PubMed  CAS  Google Scholar 

  • Zhou W, Mo MH (2002) Soil fungistasis on the spore germination of fungi (in Chinese, with English abstract). J Yunnan Univ (Nat Sci Edn) 24:312–315

    Google Scholar 

  • Zhu ML, Zhang KQ, Li TF, Xia ZY, Yang SJ (2001) Study of microorganic nematicide for controlling tobacco knot nematodiasis (in Chinese, with English abstract). J Mt Agric Biol 20:28–31

    Google Scholar 

  • Zuckerman BM, Dicklow MB, Coles GC, Marban-Mendoza N (1989) Loss of virulence of the endoparasitic fungus Drechmeria coniospora in culture. J Nematol 21:135–137

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Department of Science and␣Technology of Yunnan Province, P.R.China (No. 2005NG03 and No. 2005NG05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Q. Zhang.

Glossary

Allelopathy

a beneficial or detrimental effect from a donor plant to the recipient by chemical pathway (Rice 1984)

Antagonist

an umbrella term for parasites, predators, pathogens, competitors, and other organisms that repel, inhibit, or kill plant parasitic nematodes (Sikora 1992)

Biological control

the action of parasites, predators or pathogens in maintaining another organism’s population density at a lower average than would occur in their absence (Jatala 1986)

Biological control of phytonematode

the reduction in nematode damage by organisms antagonistic towards nematodes through the regulation of nematode populations and/or a reduction in the capacity of nematodes to cause damage, which occurs naturally and is accomplished through the manipulation of environment or by the mass introduction of the antagonist (Sayre and Walter 1991)

Chemical nematicides

the synthetic, not naturally occurring nematicides

Egg-and female-parasitic fungi

those nematophagous fungi capable of parasitising the eggs and females, the sedentary stages in the life cycle of nematode

Endoparasitic fungi

those nematophagous fungi that do not form trapping organs, but use their spores to infect the nematode hosts

Endophytic fungi

endosymbiotic fungi within plant tissues

Mycorrhizal fungi

mycorrhiza is used to describe the symbiotic association between plant roots and fungi; the fungus receives carbohydrates from the plant and in return supplies the plant with nutrients (especially phosphorus) and hormones (Ryan and Jones 2004)

Nematode-suppressive soil

soils in which phytonematodes cannot establish, soils in which they are found but do not cause disease, or soils in which they cause diseases that subsequently diminish with continuous culture of crops (Yin et al. 2003)

Nematode-trapping fungi

those nematophagous fungi with the capacity to capture motile nematodes with specialised trapping organs along the vegetative hyphae

Nematophagous fungi

those fungi with the capacity to capture, parasitise or paralyze nematodes at all stages of their life cycles; they are divided into groups depending on their mode of infection: nematode-trapping, endoparasitic, egg- and female-parasitic, and toxin-producing fungi (Jansson et al. 1997)

Rhizobia

bacteria that display symbiotic interactions with specific legume hosts and nodulate plant roots; rhizobial nodulation is a complex symbiotic process between host plant and rhizobia; the plant provides an energy source and ecological niche for the bacteria and the bacteria provide a source of fixed nitrogen for the plant (Siddiqui and Mahmood 1995)

Rhizosphere

the soil immediately around the root

Toxin-producing fungi

those nematophagous fungi capable of producing nematicidal or nematistatic compounds

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, L.Q., Zhang, K.Q. Microbial control of plant-parasitic nematodes: a five-party interaction. Plant Soil 288, 31–45 (2006). https://doi.org/10.1007/s11104-006-9009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-006-9009-3

Keywords

Navigation