Skip to main content

Advertisement

Log in

Multi-Compartmental Vaccine Delivery System for Enhanced Immune Response to gp100 Peptide Antigen in Melanoma Immunotherapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a multi-compartmental vaccine delivery system for safe and efficient delivery of the gp100 peptide antigen in melanoma immunotherapy.

Methods

Water-in-oil-in-water (W/O/W) multiple emulsion-based multi-compartmental vaccine delivery system containing the gp100 peptide was prepared by a two-step emulsification method. In vivo prophylactic and active immunization effectiveness of the novel squalane oil-containing gp100 vaccine was evaluated in the murine B16 melanoma model and compared with that of an incomplete Freund’s adjuvant (IFA)-based vaccine.

Results

Morphological evaluation of the W/O/W multiple emulsions showed that the oil-droplets were homogenously dispersed with the gp100 peptide encapsulated in an inner aqueous phase. Immunization with the gp100 peptide delivered in the W/O/W multiple emulsions-based vaccine resulted in increased protection against tumor challenge compared to IFA-based vaccine (p < 0.05, n = 8) signifying induction of enhanced anti-tumor immunity. In addition, serum Th1 cytokine levels and immuno-histochemistry of excised tumor tissues indicated activation and local infiltration of antigen specific cytotoxic T-lymphocytes into and/or surrounding the tumor mass. Moreover, the newly developed vaccine formulation did not induce any overt systemic toxicity.

Conclusion

Novel W/O/W multiple emulsions-based vaccine efficiently delivers the gp100 peptide antigen to induce cell-mediated anti-tumor immunity and offers an alternate, safe vaccine delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APCs:

antigen-presenting cells

CTLs:

cytotoxic T-lymphocytes

IFA:

incomplete Freund’s adjuvant

PBS:

phosphate-buffered saline

SME:

squalane oil multiple emulsions

W/O/W:

water-in-oil-in-water

References

  1. Thomas Jr WD, Steven GR. Review: adjuvants for cancer vaccines. Semin Immunol. 2010;22:155–61.

    Article  Google Scholar 

  2. Derek TOH, De Ennio G. Review: the path to a successful vaccine adjuvant – ‘The long and winding road’. Drug Discov Today. 2009;14:541–51.

    Article  Google Scholar 

  3. Barchfeld GL, Hessler AL, Chen M, Pizza M, Rappuoli R, Van Nest GA. The adjuvants MF59 and LT-K63 enhance the mucosal and systemic immunogenicity of subunit influenza vaccine administered intranasally in mice. Vaccine. 1999;17(7–8):695–704.

    Article  PubMed  CAS  Google Scholar 

  4. Bozkir A, Saka OM. Multiple emulsions: delivery system for antigens. Multiple emulsions: John Wiley & Sons, Inc; 2007. 293–306.

  5. Silva-Cunha AGJ, Seiller M. Multiple emulsions pharmaceutical potentiality. In: M GJS, editor. Multiple emulsions: structure, properties and applications. de Sante, France: Éd. de Santé; 1999. 279–312.

  6. Shahiwala A, Amiji MM. Enhanced mucosal and systemic immune response with squalane oil-containing multiple emulsions upon intranasal and oral administration in mice. J Drug Target. 2008;16(4):302–10.

    Article  PubMed  CAS  Google Scholar 

  7. Dupuis M, Murphy TJ, Higgins D, et al. Dendritic cells internalize vaccine adjuvant after intramuscular injection. Cell Immunol. 1998;186(1):18–27.

    Article  PubMed  CAS  Google Scholar 

  8. Pass RF, Duliegè AM, Boppana S, et al. A subunit cytomegalovirus vaccine based on recombinant envelope glycoprotein B and a new adjuvant. J Pediatr Infect Dis. 1999;180(4):970–5.

    CAS  Google Scholar 

  9. Nitayaphan S, Khamboonruang C, Sirisophana N, et al. A phase I/II trial of HIV SF2 gp120/MF59 vaccine in seronegative thais. AFRIMS-RIHES Vaccine Evaluation Group. Armed Forces Research Institute of Medical Sciences and the Research Institute for Health Sciences. Vaccine. 2000;18(15):1448–55.

    Article  PubMed  CAS  Google Scholar 

  10. Rosenthal ML. Squalane: the natural moisturizer. In: Schlossman ML, editor. Chemistry and manufacture of cosmetics 3 ed; 2002. 869–875.

  11. Un K, Kawakami S, Suzuki R, Maruyama K, Yamashita F, Hashida M. Suppression of melanoma growth and metastasis by DNA vaccination using an ultrasound-responsive and mannose-modified gene carrier. Mol Pharm. 2011;8(2):543–54.

    Article  PubMed  CAS  Google Scholar 

  12. Kawakami Y, Dang N, Wang X, et al. Recognition of shared melanoma antigens in association with major HLA-A alleles by tumor infiltrating T lymphocytes from 123 patients with melanoma. J Immunother. 2000;23(1):17–27.

    Article  PubMed  CAS  Google Scholar 

  13. Overwijk WW, Tsung A, Irvine KR, et al. gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med. 1998;188(2):277–86.

    Article  PubMed  CAS  Google Scholar 

  14. Sikora AG, Jaffarzad N, Hailemichael Y, et al. IFN-alpha enhances peptide vaccine-induced CD8+ T cell numbers, effector function, and antitumor activity. J Immunol. 2009;182(12):7398–407.

    Article  PubMed  CAS  Google Scholar 

  15. Graca L, Chen T-C, Le Moine A, Cobbold SP, Howie D, Waldmann H. Dominant tolerance: activation thresholds for peripheral generation of regulatory T cells. Trends Immunol. 2005;26(3):130–5.

    Article  PubMed  CAS  Google Scholar 

  16. Peng SL. Fas (CD95)-related apoptosis and rheumatoid arthritis. Rheumatology. 2006;45(1):26–30.

    Article  PubMed  CAS  Google Scholar 

  17. Eisenberg G, Machlenkin A, Frankenburg S, et al. Transcutaneous immunization with hydrophilic recombinant gp100 protein induces antigen-specific cellular immune response. Cell Immunol. 2010;266(1):98–103.

    Article  PubMed  CAS  Google Scholar 

  18. Okochi H, Nakano M. Preparation and evaluation of w/o/w type emulsions containing vancomycin. Adv Drug Deliv Rev. 2000;45(1):5–26.

    Article  PubMed  CAS  Google Scholar 

  19. Xiang R, Lode HN, Chao TH, et al. An autologous oral DNA vaccine protects against murine melanoma. Proc Natl Acad Sci USA. 2000;97(10):5492–7.

    Article  PubMed  CAS  Google Scholar 

  20. Overwijk WW, Theoret MR, Finkelstein SE, et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med. 2003;198(4):569–80.

    Article  PubMed  CAS  Google Scholar 

  21. Ganta S, Devalapally H, Amiji M. Curcumin enhances oral bioavailability and anti-tumor therapeutic efficacy of paclitaxel upon administration in nanoemulsion formulation. J Pharmaceut Sci. 2010;99(11):4630–41.

    Article  CAS  Google Scholar 

  22. Cao Q, Wang L, Du F, et al. Downregulation of CD4 + CD25+ regulatory T cells may underlie enhanced Th1 immunity caused by immunization with activated autologous T cells. Cell Res. 2007;17(7):627–37.

    Article  PubMed  CAS  Google Scholar 

  23. Wang L, Du F, Cao Q, et al. Immunization with autologous T cells enhances in vivo anti-tumor immune responses accompanied by up-regulation of GADD45beta. Cell Res. 2006;16(8):702–12.

    Article  PubMed  CAS  Google Scholar 

  24. Allison AC. Squalene and squalane emulsions as adjuvants. Methods. 1999;19(1):87–93.

    Article  PubMed  CAS  Google Scholar 

  25. Gibson Lanier J, Newman MJ, Lee EM, Sette A, Ahmed R. Peptide vaccination using nonionic block copolymers induces protective anti-viral CTL responses. Vaccine. 1999;18(5–6):549–57.

    Article  Google Scholar 

  26. Schriber H. Tumor immunology. In: Paul WE, editor. Fundamental immunology. Philadelphia: Lippincott Williams & Wilkins; 2003. p. 1557–92.

    Google Scholar 

  27. Kenneth M, Murphy PT, Walport M. Immunobiology. 5th ed. New York: Garland Science; 2001.

    Google Scholar 

  28. Pardo J, Bosque A, Brehm R, et al. Apoptotic pathways are selectively activated by granzyme A and/or granzyme B in CTL-mediated target cell lysis. J Cell Biol. 2004;167(3):457–68.

    Article  PubMed  CAS  Google Scholar 

  29. Chen SY, Yang A-G, Chen J-D, et al. Potent antitumour activity of a new class of tumour-specific killer cells. Nature. 1997;385(6611):78–80.

    Article  PubMed  CAS  Google Scholar 

  30. Yang S, Haluska FG. Treatment of melanoma with 5-fluorouracil or dacarbazine in vitro sensitizes cells to antigen-specific CTL lysis through perforin/granzyme- and Fas-mediated pathways. J Immunol. 2004;172(7):4599–608.

    PubMed  CAS  Google Scholar 

  31. Kalams SA, Walker BD. The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J Exp Med. 1998;188(12):2199–204.

    Article  PubMed  CAS  Google Scholar 

  32. Huang Y, Obholzer N, Fayad R, Qiao L. Turning On/Off Tumor-Specific CTL response during progressive tumor growth. J Immunol. 2005;175(5):3110–6.

    PubMed  CAS  Google Scholar 

  33. Campi G, Crosti M, Consogno G, et al. CD4(+) T cells from healthy subjects and colon cancer patients recognize a carcinoembryonic antigen-specific immunodominant epitope. Cancer Res. 2003;63(23):8481–6.

    PubMed  CAS  Google Scholar 

  34. Voigtländer C, Rössner S, Cierpka E, et al. Dendritic cells matured with TNF can be further activated in vitro and after subcutaneous injection in vivo which converts their tolerogenicity into immunogenicity. J Immunother. 2006;29(4):407–15.

    Article  PubMed  Google Scholar 

  35. Schmitz-Winnenthal FH, Volk C, Z’Graggen K, et al. High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res. 2005;65(21):10079–87.

    Article  PubMed  CAS  Google Scholar 

  36. Hokey DA, Larregina AT, Erdos G, Watkins SC, Falo Jr LD. Tumor cell loaded type-1 polarized dendritic cells induce Th1-mediated tumor immunity. Cancer Res. 2005;65(21):10059–67.

    Article  PubMed  CAS  Google Scholar 

  37. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3(2):133–46.

    Article  PubMed  CAS  Google Scholar 

  38. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909–15.

    Article  PubMed  CAS  Google Scholar 

  39. Motomura Y, Senju S, Nakatsura T, et al. Embryonic stem cell-derived dendritic cells expressing glypican-3, a recently identified oncofetal antigen, induce protective immunity against highly metastatic mouse melanoma, B16-F10. Cancer Res. 2006;66(4):2414–22.

    Article  PubMed  CAS  Google Scholar 

  40. Matsuyoshi H, Senju S, Hirata S, Yoshitake Y, Uemura Y, Nishimura Y. Enhanced priming of antigen-specific CTLs in vivo by embryonic stem cell-derived dendritic cells expressing chemokine along with antigenic protein: application to antitumor vaccination. J Immunol. 2004;172(2):776–86.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments AND DISCLOSURES

The authors wish to thank Husain Attarwala, Milind Chalishazar, and Lavanya Thapa for their help with some of the experimental procedures.

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Amiji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalariya, M., Ganta, S. & Amiji, M. Multi-Compartmental Vaccine Delivery System for Enhanced Immune Response to gp100 Peptide Antigen in Melanoma Immunotherapy. Pharm Res 29, 3393–3403 (2012). https://doi.org/10.1007/s11095-012-0834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0834-1

KEY WORDS

Navigation