Skip to main content
Log in

Rapidly computing sparse Legendre expansions via sparse Fourier transforms

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we propose a general strategy for rapidly computing sparse Legendre expansions. The resulting methods yield a new class of fast algorithms capable of approximating a given function f : [−1, 1] → ℝ with a near-optimal linear combination of s Legendre polynomials of degree ≤ N in just \((s \log N)^{\mathcal {O}(1)}\)-time. When sN, these algorithms exhibit sublinear runtime complexities in N, as opposed to traditional Ω(NlogN)-time methods for computing all of the first N Legendre coefficients of f. Theoretical as well as numerical results demonstrate the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akavia, A., Goldwasser, S., Safra, S.: Proving Hard-Core Predicates Using List Decoding. In: FOCS, vol. 3, pp 146–156 (2003)

  2. Björck, A.: Numerical Methods for Least Squares Problems. SIAM (1996)

  3. Blum, A., Furst, M., Jackson, J., Kearns, M., Mansour, Y., Rudich, S.: Weakly learning DNF and characterizing statistical query learning using Fourier analysis. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, pp 253–262. ACM (1994)

  4. Bogaert, I., Michiels, B., Fostier, J.: \(\mathcal {O}(1)\) computation of Legendre polynomials and Gauss - Legendre nodes and weights for parallel computing. SIAM J. Sci. Comput. 34(3), C83–C101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover Publications Inc. (2001)

  6. Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDE,s. Found Comput. Math. 10(6), 615–646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, A., Devore, R., Schwab, C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs. Anal. Appl. (Singap.) 9 (01), 11–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Springer (2013)

  9. Frigo, M., Johnson, S.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216–231 (2005)

    Article  Google Scholar 

  10. Gilbert, A., Guha, S., Indyk, P., Muthukrishnan, S., Strauss, M.: Near-optimal sparse Fourier estimation via sampling. ACM STOC, 152–161 (2002)

  11. Gilbert, A., Indyk, P., Iwen, M., Schmidt, L.: Recent developments in the sparse Fourier transform: a compressed Fourier transform for big data. IEEE Signal Process. Mag. 31(5), 91–100 (2014)

    Article  Google Scholar 

  12. Gilbert, A., Muthukrishnan, S., Strauss, M.: Improved time bounds for near-optimal sparse Fourier representations. In: Proceedings of SPIE Wavelets XI (2005)

  13. Goldreich, O.: The foundations of modern cryptography. In: Modern Cryptography, Probabilistic Proofs and Pseudorandomness, pp 1–37. Springer (1999)

  14. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp 25–32. ACM (1989)

  15. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Simple and practical algorithm for sparse Fourier transform. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp 1183–1194. SIAM (2012)

  16. Iserles, A.: A fast and simple algorithm for the computation of Legendre coefficients. Numer. Math. 117(3), 529–553 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iwen, M.A.: Combinatorial sublinear-time Fourier algorithms. Found. Comput. Math. 10(3), 303–338 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Iwen, M.A.: Improved approximation guarantees for sublinear-time Fourier algorithms. Appl. Comput. Harmon. Anal. 34(1), 57–82 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iwen, M.A., Gilbert, A.C., Strauss, M.J.: Empirical evaluation of a sub-linear time sparse DFT algorithm. Commun. Math. Sci. 5(4) (2007)

  20. Kushilevitz, E., Mansour, Y.: Learning decision trees using the Fourier spectrum. SIAM J. Comput. 22(6), 1331–1348 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lawlor, D., Wang, Y., Christlieb, A.: Adaptive sub-linear time Fourier algorithms. Adv. Adapt. Data Anal. 5(01) (2013)

  22. Le Maître, O., Knio, O.M.: Spectral Methods for Uncertainty Quantification. Springer (2010)

  23. Mansour, Y.: Learning boolean functions via the Fourier transform. In: Theoretical Advances in Neural Computation and Learning, pp 391–424. Springer (1994)

  24. Mansour, Y.: Randomized interpolation and approximation of sparse polynomials. SIAM J. Comput. 24(2), 357–368 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peter, T., Plonka, G.: A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators. Inverse Prob. 29(2), 025001 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Peter, T., Plonka, G., Roşca, D.: Representation of sparse Legendre expansions. J Symbolic Comput. 50, 159–169 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Polyanin, A.D.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. CRC Press (2001)

  28. Potts, D., Tasche, M.: Sparse polynomial interpolation in Chebyshev bases. Linear Algebra Appl. 441, 61–87 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Potts, D., Tasche, M.: Reconstruction of sparse Legendre and Gegenbauer expansions. BIT Numer. Math., 1–25 (2015)

  30. Rauhut, H., Ward, R.: Sparse Legendre expansions via 1-minimization. J. Approx. Theory 164(5), 517–533 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Robbins, H.: A remark on Stirlings formula. Amer. Math. Monthly, 26–29 (1955)

  32. Segal, B., Iwen, M.: Improved sparse Fourier approximation results: faster implementations and stronger guarantees. Numer. Algorithms, 1–25 (2013)

  33. Stanica, P.: Good lower and upper bounds on binomial coefficients. Journal of Inequalities in Pure and Applied Mathematics 2(3), 30 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Titchmarsh, E.C.: The theory of functions, vol. 80. London (1939)

  35. Wang, H., Xiang, S.: On the convergence rates of Legendre approximation. Math. Comp. 81(278), 861–877 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, S., Jin, J.: Computation of Special Functions, vol. 160. Wiley, New York (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Iwen.

Additional information

M.A. Iwen was supported in part by NSF DMS-1416752.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Iwen, M. & Kim, H. Rapidly computing sparse Legendre expansions via sparse Fourier transforms. Numer Algor 74, 1029–1059 (2017). https://doi.org/10.1007/s11075-016-0184-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0184-x

Keywords

Navigation