Skip to main content
Log in

Modeling and analyses of driver’s characteristics in a traffic system with passing

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the effect of aggressive or timid characteristics of driver’s behavior with passing by means of lattice hydrodynamic traffic flow model. The effect of driver’s characteristic on the stability of traffic flow is examined through linear stability analysis. It is shown that for both the cases of passing or without passing the stability region significantly enlarges (reduces) as the proportion of aggressive (timid) drivers increases. To describe the propagation behavior of a density wave near the critical point, nonlinear analysis is conducted and mKdV equation representing kink–antikink soliton is derived. It is observed that jamming transition occurs between uniform flow and kink jam phase with increase in aggressive driver’s characteristics for smaller values of passing. When passing constant is greater than a critical value, jamming transitions occur among uniform traffic flow and kink-Bando traffic wave through chaotic phase. Numerical simulation is carried out to validate the theoretical findings which confirm that traffic jam can be suppressed efficiently by considering the driver’s characteristics in a single-lane traffic system with or without passing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  2. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I(2), 2221–2229 (1992)

    Google Scholar 

  3. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067 (2001)

    Article  Google Scholar 

  4. Nagatani, T.: The physics of traffic jams. Rep. Prog. Phys. 65, 1331–1386 (2002)

    Article  Google Scholar 

  5. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035 (1995)

    Article  Google Scholar 

  6. Jiang, R., Wu, Q.S., Zhu, Z.J.: A new continuum model for traffic flow and numerical tests. Transp. Res. B Methodol. 36, 405–419 (2002)

    Article  Google Scholar 

  7. Gupta, A.K., Katiyar, V.K.: A new anisotropic continuum model for traffic flow. Phys. A 368, 551–559 (2006)

    Article  Google Scholar 

  8. Gupta, A.K., Katiyar, V.K.: Analyses of shock waves and jams in traffic flow. J. Phys. A Math. Gen. 38, 4069–4083 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gupta, A.K., Katiyar, V.K.: Phase transition of traffic states with on-ramp. Phys. A 371, 674–682 (2006)

    Article  Google Scholar 

  10. Nagatani, T.: Modified KdV equation for jamming transition in the continuum models of traffic. Phys. A 261, 599–607 (1998)

    Article  MathSciNet  Google Scholar 

  11. Nagatani, T.: Chaotic jam and phase transition in traffic flow with passing. Phys. Rev. E 60, 1535 (1999)

    Article  Google Scholar 

  12. Ge, H.X., Cheng, R.J.: The backward looking effect in the lattice hydrodynamic model. Phys. A 387, 6952–6958 (2008)

    Article  Google Scholar 

  13. Peng, G.H., Cai, X.H., Cao, B.F., Liu, C.Q.: Non-lane-based lattice hydrodynamic model of traffic flow considering the lateral effects of the lane width. Phys. Lett. A 375, 2823–2827 (2011)

    Article  MATH  Google Scholar 

  14. Peng, G.H.: A new lattice model of traffic flow with the consideration of individual difference of anticipation driving behavior. Commun. Nonlinear Sci. Numer. Simul. 18, 2801–2806 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kang, Y.R., Sun, D.H.: Lattice hydrodynamic traffic flow model with explicit drivers physical delay. Nonlinear Dyn. 71, 531–537 (2013)

    Article  MathSciNet  Google Scholar 

  16. Ge, H.X., Dai, S.Q., Xue, Y., Dong, L.Y.: Stabilization analysis and modified Korteweg–de Vries equation in a cooperative driving system. Phys. Rev. E 71, 066119 (2005)

    Article  MathSciNet  Google Scholar 

  17. Ge, H.X.: The Korteweg–de Vries soliton in the lattice hydrodynamic model. Phys. A 388, 1682–1686 (2009)

    Article  Google Scholar 

  18. Ge, H.X., Cheng, R.J., Lei, L.: The theoretical analysis of the lattice hydrodynamic models for traffic flow theory. Phys. A 389, 2825–2834 (2010)

    Article  Google Scholar 

  19. Nagatani, T.: Jamming transitions and the modified Korteweg–de Vries equation in a two-lane traffic flow. Phys. A 265, 297–310 (1999)

    Article  MathSciNet  Google Scholar 

  20. Peng, G.H.: A new lattice model of two-lane traffic flow with the consideration of optimal current difference. Commun. Nonlinear Sci. Numer. Simul. 18, 559–566 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peng, G.H.: A new lattice model of the traffic flow with the consideration of the driver anticipation effect in a two-lane system. Nonlinear Dyn. 73, 1035–1043 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gupta, A.K., Redhu, P.: Analyses of drivers anticipation effect in sensing relative flux in a new lattice model for two-lane traffic system. Phys. A 390, 5622–5632 (2013)

    Article  Google Scholar 

  23. Gupta, A.K., Redhu, P.: Analyses of the drivers anticipation effect in a new lattice hydrodynamic traffic flow model with passing. Nonlinear Dyn. 76, 1001–1011 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, M., Sun, D.H., Tian, C.: An extended two-lane traffic flow lattice model with drivers delay time. Nonlinear Dyn. 77, 839–847 (2014)

    Article  MathSciNet  Google Scholar 

  25. Peng, G.H., Cai, X.H., Liu, C.Q., Cao, B.F.: A new lattice model of traffic flow with the consideration of the drivers forecast effects. Phys. Lett. A 375, 2153–2157 (2011)

  26. Peng, G.H., Nie, F.Y., Cao, B.F., Liu, C.Q.: A drivers memory lattice model of traffic flow and its numerical simulation. Nonlinear Dyn. 67, 1811–1815 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sharma, S.: Lattice hydrodynamic modeling of two-lane traffic flow with timid and aggressive driving behavior. Phys. A 421, 401–411 (2015)

    Article  Google Scholar 

  28. Sharma, S.: Effect of drivers anticipation in a new two-lane lattice model with the consideration of optimal current difference. Nonlinear Dyn. 81, 991–1003 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sapna Sharma.

Appendix

Appendix

In this appendix, we give the expansion of each terms in Eq. (8) using Eqs. (17) and  (18) to the fifth order of \(\epsilon \).***

$$\begin{aligned}&\rho _j(t+\tau )=\rho _\mathrm{c}+\epsilon R+\epsilon ^2 (b\tau )\partial _X R\nonumber \\&\quad +\frac{\epsilon ^3}{2}(b\tau )^2 \partial ^{2}_X R+\frac{\epsilon ^4}{6} (b\tau )^3 \partial ^{3}_X R+\epsilon ^4\tau \partial _T R\nonumber \\&\quad +\frac{\epsilon ^5}{24}(b\tau )^4 \partial ^{4}_X R +\epsilon ^{5}b\tau ^2 \partial _T \partial _X R. \end{aligned}$$
(32)
$$\begin{aligned}&\rho _j(t+2\tau )=\rho _\mathrm{c}+\epsilon R+\epsilon ^2 (2b\tau )\partial _XR\nonumber \\&\quad +\frac{\epsilon ^3}{2}(2b\tau )^2 \partial ^{2}_XR\nonumber \\&\quad +\frac{\epsilon ^4}{6}(2b\tau )^3 \partial ^{3}_X R+\epsilon ^4(2\tau ) \partial _T R\nonumber \\&\quad + \frac{\epsilon ^5}{24}(2b\tau )^4 \partial ^{4}_X R +\epsilon ^{5}(4b\tau ^2) \partial _T \partial _X R. \end{aligned}$$
(33)
$$\begin{aligned}&\rho _{j+1}(t)=\rho _\mathrm{c}+\epsilon R+\epsilon ^2 \partial _X R+\frac{\epsilon ^3}{2} \partial ^2_XR\nonumber \\&\quad +\frac{\epsilon ^4}{6}\partial ^3_X R+\frac{\epsilon ^5}{24}\partial ^4_X R.\end{aligned}$$
(34)
$$\begin{aligned}&\rho _{j+1}(t+\tau )-2\rho _{j}(t+\tau )+\rho _{j-1}(t+\tau )\nonumber \\&\quad =\epsilon ^3\partial ^2_X R+\epsilon ^4(b\tau )\partial ^3_X R\nonumber \\&\qquad +\frac{\epsilon ^5 }{12}(1+6b^2\tau ^2)\partial ^4_X R. \end{aligned}$$
(35)

The expansion of optimal velocity function at the turning point is

$$\begin{aligned} V(\rho _j)&=V(\rho _\mathrm{c})+V'(\rho _\mathrm{c})(\rho _j-\rho _\mathrm{c})\nonumber \\&\quad +\frac{V'''(\rho _\mathrm{c})}{6}(\rho _j-\rho _\mathrm{c})^3. \end{aligned}$$
(36)
$$\begin{aligned} V(\rho _{j+1})&=V(\rho _\mathrm{c})+V'(\rho _\mathrm{c})(\rho _{j+1}-\rho _\mathrm{c})\nonumber \\&\quad +\frac{V'''(\rho _\mathrm{c})}{6}(\rho _{j+1}-\rho _\mathrm{c})^3. \end{aligned}$$
(37)

Using Eqs. (36) and (37), we get

$$\begin{aligned}&V(\rho _{j+1})-V(\rho _j)=V'(\rho _\mathrm{c})\left[ \epsilon ^2\partial _XR \right. \nonumber \\&\quad +\left. \frac{\epsilon ^3}{2}\partial _X^2R+\frac{\epsilon ^4}{6} \partial _X^3R+\frac{\epsilon ^5}{24}\partial _X^4R\right] \nonumber \\&\quad +\frac{V'''(\rho _\mathrm{c})}{6}\left[ \epsilon ^4\partial _XR^3+ \frac{\epsilon ^5}{2}\partial ^2_XR^3\right] . \end{aligned}$$
(38)

Some other important expansions are also computed using Eqs. (32)–(38) and are given as

$$\begin{aligned}&V'(\rho _{j+1}(t))\tilde{\varDelta }\rho _{j+1}(t)-V'(\rho _{j}(t)) \tilde{\varDelta }\rho _{j}(t)\nonumber \\&\quad =\frac{\epsilon ^3 }{2} (b\tau )V'(\rho _\mathrm{c})\partial ^2_X R +\frac{\epsilon ^4 }{2} (b^2\tau ^2+b\tau )V'(\rho _\mathrm{c})\partial ^3_X R\nonumber \\&\qquad +\epsilon ^5 V'(\rho _\mathrm{c})\left[ \tau \partial _T \partial _X R\right. \nonumber \\&\left. \qquad +\frac{(4b\tau +6b^2\tau ^2+4b^3\tau ^3)}{24}\partial ^4_X R\right] . \end{aligned}$$
(39)

By inserting (32), (33), (35), (38), and (39) into Eq. (8), we obtain Eq. (19).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S. Modeling and analyses of driver’s characteristics in a traffic system with passing. Nonlinear Dyn 86, 2093–2104 (2016). https://doi.org/10.1007/s11071-016-3018-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3018-4

Keywords

Navigation