Skip to main content
Log in

Characterization of the Pituitary Tumor Transforming Gene 1 Knockout Mouse Retina

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Recent gene expression studies on mouse models for retinal degeneration identified deregulation of Pituitary tumor transforming gene 1 (Pttg1) as a potential susceptibility factor involved in photoreceptor cell death. Pttg1 is a transcription regulatory protein involved in sister chromatid segregation, and Pttg1 / mice exhibit testicular and splenic hypoplasia, thymic hyperplasia, aberrant cell cycle progression, chromosome instability, and impaired glucose homeostasis leading to diabetes, particularly in older males. Due to Pttg1 deregulation in dystrophic retinas, we characterized Pttg1 / retinas using Hematoxylin and Eosin (H&E) staining, immunohistochemistry (IHC), and electroretinography (ERG). Seven month old Pttg1 / mice were also examined for a diabetic retinopathy phenotype using Fluorescein Angiography (FA) to test for neovascularization. Our data reveal that up to 9 months of age, Pttg1 / retinas have a healthy morphology and normal photoreceptor function. This study lays the groundwork for further investigation into the relevance of Pttg1 in retinal dystrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang Z, Yu R, Melmed S (2001) Mice lacking pituitary tumor transforming gene show testicular and splenic hypoplasia, thymic hyperplasia, thrombocytopenia, aberrant cell cycle progression, and premature centromere division. Mol Endocrinol 15:1870–1879

    Article  PubMed  CAS  Google Scholar 

  2. Caporali S, Levati L, Starace G et al (2008) AKT is activated in an ataxia-telangiectasia and Rad3-related-dependent manner in response to temozolomide and confers protection against drug-induced cell growth inhibition. Mol Pharmacol 74:173–183

    Article  PubMed  CAS  Google Scholar 

  3. Wang Z, Moro E, Kovacs K et al (2003) Pituitary tumor transforming gene-null male mice exhibit impaired pancreatic beta cell proliferation and diabetes. Proc Natl Acad Sci USA 100:3428–3432

    Article  PubMed  CAS  Google Scholar 

  4. Yetemian RM, Brown BM, Craft CM (2010) Loss of G-protein coupled receptor kinase 1 in Nrl / mice leads to neovascularization, enhanced inflammatory response, and age-related cone dystrophy. Invest Ophthalmol Vis Sci 51:6196–6206

    Article  PubMed  Google Scholar 

  5. van de Pavert SA, Sanz AS, Aartsen WM et al (2007) Crb1 is a determinant of retinal apical Muller glia cell features. Glia 55:1486–1497

    Article  PubMed  Google Scholar 

  6. Fernandez-Medarde A, Barhoum R, Riquelme R et al (2009) RasGRF1 disruption causes retinal photoreception defects and associated transcriptomic alterations. J Neurochem 110:641–652

    Article  PubMed  CAS  Google Scholar 

  7. Kim SR, Fishkin N, Kong J et al (2004) Rpe65 Leu450Met variant is associated with reduced levels of the retinal pigment epithelium lipofuscin fluorophores A2E and iso-A2E. Proc Natl Acad Sci USA 101:11668–11672

    Article  PubMed  CAS  Google Scholar 

  8. Pittler SJ, Baehr W (1991) Identification of a nonsence mutation in the rod photoreceptor cGMP phosphodies-terase β-subunit gene of the rd mouse. Proc Natl Acad Science USA 88:8322–8326

    Article  CAS  Google Scholar 

  9. Brown BM, Ramirez T, Rife L, Craft CM (2010) Visual arrestin 1 contributes to cone photoreceptor survival and light-adaptation. Invest Ophthalmol Vis Sci 51:2372–2380

    Article  PubMed  Google Scholar 

  10. Zhu X, Brown B, Rife L, Craft CM (2006) Slowed photoresponse recovery and age-related degeneration in cones lacking G protein-coupled receptor kinase 1. In: Hollyfield JG, Anderson RE, LaVail MM (eds) Advances in experimental medicine and biology, vol 572. Springer, pp 133–139

  11. Zhu X, Li A, Brown B, Weiss ER et al (2002) Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors. Mol Vis 8:462–471

    PubMed  CAS  Google Scholar 

  12. Zhu X, Wu K, Rife L et al (2005) Carboxypeptidase E is required for normal synaptic transmission from photoreceptors to the inner retina. J Neurochem 95:1351–1362

    Article  PubMed  CAS  Google Scholar 

  13. Zhu X, Craft CM (2000) Modulation of CRX transactivation activity by phosducin isoforms. Mol Cell Biol 20:5216–5226

    Article  PubMed  CAS  Google Scholar 

  14. Daniele LL, Lillo C, Lyubarsky AL et al (2005) Cone-like morphological, molecular, and electrophysiological features of the photoreceptors of the Nrl knockout mouse. Invest Ophthalmol Vis Sci 46:2156–2167

    Article  PubMed  Google Scholar 

  15. Oh EC, Cheng H, Hao H et al (2008) Rod differentiation factor NRL activates the expression of nuclear receptor NR2E3 to suppress the development of cone photoreceptors. Brain Res 1236:16–29

    Article  PubMed  CAS  Google Scholar 

  16. Caporali A, Pani E, Horrevoets AJ et al (2008) Neurotrophin p75 receptor (p75NTR) promotes endothelial cell apoptosis and inhibits angiogenesis: implications for diabetes-induced impaired neovascularization in ischemic limb muscles. Circ Res 103:e15–e26

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Cheryl M. Craft, Ph.D. is the Mary D. Allen Chair in Vision Research, Doheny Eye Institute and a Research to Prevent Blindness Senior Scientific Investigator. Supported by NIH EY015851 (CMC), National Eye Institute Core Grant EY03040 (Doheny Eye Institute), Research to Prevent Blindness (DEI), the Foundation Fighting Blindness (DEI), Mary D. Allen Foundation (Richard Newton Lolley Memorial Scholarship (RMY), William Hansen Sandberg Memorial Foundation (RMY), Tony Gray Foundation, Dorie Miller, and Dr. Paul R. Burton. We sincerely appreciate the generous continued support for our vision research program by Mrs. Mary D. Allen. We also thank Dr. Shlomo Melmed for the Pttg1 / mice and Dr. Larry A. Donoso for the Arr1 D9F2 antibody. The authors acknowledge the expert technical support of Bruce Brown, Alexander Wang for his help with the experiments, Lawrence Rife for ERG analysis, Fernando Gallardo for FA, and Ernesto Barron for figures. Also, we thank Dr. Shun-Ping Huang, Dr. Freddi Zuniga and Leng-Ying Chen for their scientific contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl M. Craft.

Additional information

Special Issue: In Honor of Dr. Dianna Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yetemian, R.M., Craft, C.M. Characterization of the Pituitary Tumor Transforming Gene 1 Knockout Mouse Retina. Neurochem Res 36, 636–644 (2011). https://doi.org/10.1007/s11064-010-0334-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0334-9

Keywords

Navigation