Skip to main content
Log in

Effect of scattering from localized surface plasmon resonance on improving the luminescence efficiency of silicon nitride light-emitting devices

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We demonstrate the localized surface plasmon resonance enhanced silicon-rich silicon nitride based light-emitting devices by embedding the silver nanostructures between the silicon substrate and luminescent matrix. An about 30 times enhancement of external quantum efficiency is achieved by these inserted silver nanostructures. We attribute this distinct enhancement mainly to the improved back-scattering and carrier injection by the addition of silver nanostructures. The coupling between localized surface plasmons and excitons as well as the increase of light extraction via the surface roughening of ITO electrode also contributes to the enhancement of electroluminescence intensity and its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn BJ, Kim TS, Dong Y, Hong MT, Song JH, Song JH, Yuh HK, Choi SC, Bae DK, Moon Y (2012) Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes. Appl Phys Lett 100:031905

    Article  Google Scholar 

  • Anutgan M, Anutgan T, Atilgan I, Katircioglu B (2011) Electroforming of amorphous silicon nitride heterojunction visible light emitter. IEEE Trans Electron Devices 58:2537–2543

    Article  CAS  Google Scholar 

  • Cen ZH, Chen TP, Ding L, Liu Z, Wong JI, Yang M, Goh WP, Fung S (2011) Influence of implantation dose on electroluminescence from Si-implanted silicon nitride thin films. Appl Phys A Mater Sci Eng 104:239–245

    Article  CAS  Google Scholar 

  • Cheng P, Li D, Xie M, Yang D, Bao J (2012) Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation. Opt Commun 285:1864–1867

    Article  CAS  Google Scholar 

  • Delaney KT, Rinke P, Walle CG (2009) Auger recombination rates in nitrides from first principles. Appl Phys Lett 94:191109

    Article  Google Scholar 

  • Ee YK, Arif RA, Tansu N, Kumnorkaew P, Gilchrist JF (2007) Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays. Appl Phys Lett 91:221107

    Article  Google Scholar 

  • Ee YK, Kumnorkaew P, Arif RA, Tong H, Gilchrist JF, Tansu N (2009) Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures. Opt Express 17:13747–13757

    Article  CAS  Google Scholar 

  • Gaillard N, Pinzelli L, Gros-Jean M, Bsiesy A (2006) In situ electric field simulation in metal/insulator/metal capacitors. Appl Phys Lett 89:133506

    Article  Google Scholar 

  • Huh C, Kim KH, Kim BK, Kim W, Ko H, Choi CJ, Sung GY (2010) Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures. Adv Mater 22:5058–5062

    Article  CAS  Google Scholar 

  • Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706

    Article  CAS  Google Scholar 

  • Kim BH, Cho CH, Park SJ, Park NM, Sung GY (2006) Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency. Appl Phys Lett 89:063509

    Article  Google Scholar 

  • Kim BH, Cho CH, Mun JS, Kwon MK, Park TY, Kim JS, Byeon CC, Lee J, Park SJ (2008) Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons. Adv Mater 20:3100–3104

    Article  CAS  Google Scholar 

  • Kuech TF, Mawst LJ (2010) Nanofabrication of III–V semiconductors employing diblock copolymer lithography. J Phys D Appl Phys 43:183001

    Article  Google Scholar 

  • Li D, Huang J, Yang D (2009) Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment. Physica E41:920–922

    Article  Google Scholar 

  • Li XH, Song R, Ee YK, Kumnorkaew P, Gilchrist JF, Tansu N (2011) Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios. IEEE Photon J 3:489–499

    Article  Google Scholar 

  • Li D, Wang F, Ren C, Yang D (2012a) Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons. Opt Mater Express 2:872–877

    Article  Google Scholar 

  • Li D, Wang F, Yang D, Que D (2012b) Electrically tunable electroluminescence from SiN x -based light-emitting devices. Opt Express 20:17359–17366

    Article  CAS  Google Scholar 

  • Lin GR, Pai YH, Lin CT, Chen CC (2010) Comparison on the electroluminescence of Si-rich SiN x and SiO x based light-emitting diodes. Appl Phys Lett 96:263514

    Article  Google Scholar 

  • Lin CD, Cheng CH, Lin YH, Wu C-L, Pai YH, Lin GR (2011) Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiN x films. Appl Phys Lett 99:243501

    Article  Google Scholar 

  • Liu G, Zhao H, Zhang J, Park JH, Mawst LJ, Tansu N (2011) Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography. Nanoscale Res Lett 6:342

    Article  Google Scholar 

  • Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A (2004) Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater 3:601–605

    Article  CAS  Google Scholar 

  • Okamoto K, Niki I, Scherer A, Narukawa Y, Mukai T, Kawakami Y (2005) Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy. Appl Phys Lett 87:071102

    Article  Google Scholar 

  • Park NM, Choi CJ, Seong TY, Park SJ (2001) Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. Phys Rev Lett 86:1355–1357

    Article  CAS  Google Scholar 

  • Purcell EM (1946) Spontaneous emission probabilities at radio frequencies. Phys Rev 69:681

    Article  Google Scholar 

  • Tansu N, Mawst LJ (2005) Current injection efficiency of InGaAsN quantum-well lasers. J Appl Phys 97:054502

    Article  Google Scholar 

  • Titkov IE, Sannikov DA, Park YM, Son JK (2012) Blue light emitting diode internal and injection efficiency. AIP Adv 2:032117

    Article  CAS  Google Scholar 

  • Wang M, Li D, Yuan Z, Yang D, Que D (2007) Photoluminescence of Si-rich silicon nitride: defect-related states and silicon nanoclusters. Appl Phys Lett 90:131903

    Article  Google Scholar 

  • Wang M, Huang J, Yuan Z, Anopchenko A, Li D, Yang D, Pavesi L (2008) Light emission properties and mechanism of low-temperature prepared amorphous SiN x films. II. Defect states electroluminescence. J Appl Phys 104:083505

    Article  Google Scholar 

  • Wang F, Li D, Yang D, Que D (2012a) Enhancement of light-extraction efficiency of SiN x light-emitting devices through a rough Ag island film. Appl Phys Lett 100:031113

    Article  Google Scholar 

  • Wang F, Wang M, Li D, Yang D (2012b) Localized surface plasmon resonance enhanced photoluminescence from SiN x with different N/Si ratios. Opt Mater Express 2:1437–1448

    Article  CAS  Google Scholar 

  • Yan J, Yu TJ, Li XB, Tao YB, Xu CL, Long H, Yang ZY, Zhang GY (2011) Efficiency droop behaviors of the blue LEDs on patterned sapphire substrate. J Appl Phys 110:073102

    Article  Google Scholar 

  • Yeh DM, Huang CF, Chen CY, Lu YC, Yang CC (2007) Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode. Appl Phys Lett 91:171103

    Article  Google Scholar 

  • Zhao H, Liu G, Arif RA, Tansu N (2010) Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes. Solid State Electron 54:1119–1124

    Article  CAS  Google Scholar 

  • Zhao H, Zhang J, Liu G, Tansu N (2011) Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes. Appl Phys Lett 98:151115

    Article  Google Scholar 

  • Zhmakin AI (2011) Enhancement of light extraction from light emitting diodes. Phys Rep 498:189–241

    Article  CAS  Google Scholar 

  • Zhu S, Chen TP, Liu YC, Fung S (2012) A quantitative modeling of the contributions of localized surface plasmon resonance and interband transitions to absorbance of gold nanoparticles. J Nanopart Res 14:856

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the 973 Program (No. 2013CB632102), the 863 Program (No. 2011AA050517), and the National Natural Science Foundation of China (No. 61176117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Ren, C., Li, D. et al. Effect of scattering from localized surface plasmon resonance on improving the luminescence efficiency of silicon nitride light-emitting devices. J Nanopart Res 15, 1419 (2013). https://doi.org/10.1007/s11051-013-1419-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1419-6

Keywords

Navigation