Skip to main content
Log in

RETRACTED ARTICLE: Text mining and network analysis of molecular interaction in non-small cell lung cancer by using natural language processing

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

This article was retracted on 18 August 2015

Abstract

Lung cancer including non-small cell lung cancer (NSCLC) and small cell lung cancer is one of the most aggressive tumors with high incidence and low survival rate. The typical NSCLC patients account for 80–85 % of the total lung cancer patients. To systemically explore the molecular mechanisms of NSCLC, we performed a molecular network analysis between human and mouse to identify key genes (pathways) involved in the occurrence of NSCLC. We automatically extracted the human-to-mouse orthologous interactions using the GeneWays system by natural language processing and further constructed molecular (gene and its products) networks by mapping the human-to-mouse interactions to NSCLC-related mammalian phenotypes, followed by module analysis using ClusterONE of Cytoscape and pathway enrichment analysis using the database for annotation, visualization and integrated discovery (DAVID) successively. A total of 70 genes were proven to be related to the mammalian phenotypes of NSCLC, and seven genes (ATAD5, BECN1, CDKN2A, FNTB, E2F1, KRAS and PTEN) were found to have a bearing on more than one mammalian phenotype (MP) each. Four network clusters centered by four genes thyroglobulin (TG), neurofibromatosis type-1 (NF1 ), neurofibromatosis type 2 (NF2 ) and E2F transcription factor 1 (E2F1) were generated. Genes in the four network modules were enriched in eight KEGG pathways (p value < 0.05), including pathways in cancer, small cell lung cancer, cell cycle and p53 signaling pathway. Genes p53 and E2F1 may play important roles in NSCLC occurrence, and thus can be considered as therapeutic targets for NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30

    Article  PubMed  Google Scholar 

  2. Dempke W, Suto T, Reck M (2010) Targeted therapies for non-small cell lung cancer. Lung Cancer (Ams, Neth) 67(3):257

    Article  Google Scholar 

  3. Strauss GM, Herndon J, Maddus MA et al (2004) Randomized clinical trial of adjuvant chemotherapy with paclitaxel and carboplatin following resection in stage IB non-small cell lung cancer (NSCLC): report of cancer and leukemia group B (CALGB) protocol 9633. J Clin Oncol (Meet Abstr) 22(Suppl 14):7019

    Google Scholar 

  4. Perez BA, Ghafoori AP, Lee C-L, Johnston SM, Li Y, Moroshek JG, Ma Y, Mukherjee S, Kim Y, Badea CT (2013) Assessing the radiation response of lung cancer with different gene mutations using genetically engineered mice. Front Oncol 3:72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Patrick O, Ferguson J, Shyu J, Current R, Rehage T, Tsai J, Christensen M, Tran HB, Chien SS-C, Shieh F (2013) Analytic performance studies and clinical reproducibility of a real-time PCR assay for the detection of epidermal growth factor receptor gene mutations in formalin-fixed paraffin-embedded tissue specimens of non-small cell lung cancer. BMC Cancer 13(1):210

    Article  Google Scholar 

  6. Singh T, Katiyar SK (2013) Honokiol inhibits non-small cell lung cancer cell migration by targeting PGE2-mediated activation of β-catenin signaling. PLoS ONE 8(4):e60749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Yang X, Yao J, Luo Y, Han Y, Wang Z, Du L (2012) P38 MAP kinase mediates apoptosis after genipin treatment in non-small-cell lung cancer H1299 cells via a mitochondrial apoptotic cascade. J Pharmacol Sci 121(4):272–281

    Article  Google Scholar 

  8. Chen H, Sharon E (2013) IGF-1R as an anti-cancer target—trials and tribulations. Chin J Cancer 32(5):242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Beer DG, Kardia SL, Huang C-C, Giordano TJ, Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG (2002) Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 8(8):816–824

    CAS  PubMed  Google Scholar 

  10. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 98(24):13790–13795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. McDoniels-Silvers AL, Nimri CF, Stoner GD, Lubet RA, You M (2002) Differential gene expression in human lung adenocarcinomas and squamous cell carcinomas. Clin Cancer Res 8(4):1127–1138

    CAS  PubMed  Google Scholar 

  12. Nacht M, Dracheva T, Gao Y, Fujii T, Chen Y, Player A, Akmaev V, Cook B, Dufault M, Zhang M (2001) Molecular characteristics of non-small cell lung cancer. Proc Natl Acad Sci USA 98(26):15203–15208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Rzhetsky A, Iossifov I, Loh JM, White KP (2006) Microparadigms: chains of collective reasoning in publications about molecular interactions. Proc Natl Acad Sci USA 103(13):4940–4945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, van de Rijn M, Rosen GD, Perou CM, Whyte RI (2001) Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA 98(24):13784–13789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Rzhetsky A, Koike T, Kalachikov S, Gomez SM, Krauthammer M, Kaplan SH, Kra P, Russo JJ, Friedman C (2000) A knowledge model for analysis and simulation of regulatory networks. Bioinformatics 16(12):1120–1128

    Article  CAS  PubMed  Google Scholar 

  16. Rosell R, Monzo M, O’Brate A, Taron M (2002) Translational oncogenomics: toward rational therapeutic decision-making. Curr Opin Oncol 14(2):171–179

    Article  PubMed  Google Scholar 

  17. Rodríguez-Penagos C, Salgado H, Martínez-Flores I, Collado-Vides J (2007) Automatic reconstruction of a bacterial regulatory network using natural language processing. BMC Bioinform 8(1):293

    Article  Google Scholar 

  18. Rzhetsky A, Seringhaus M, Gerstein M (2008) Seeking a new biology through text mining. Cell 134(1):9–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Rzhetsky A, Iossifov I, Koike T, Krauthammer M, Kra P, Morris M, Yu H, Duboué PA, Weng W, Wilbur WJ (2004) GeneWays: a system for extracting, analyzing, visualizing, and integrating molecular pathway data. J Biomed Inform 37(1):43–53

    Article  CAS  PubMed  Google Scholar 

  20. Liu K, Hogan WR, Crowley RS (2011) Natural language processing methods and systems for biomedical ontology learning. J Biomed Inform 44(1):163–179

    Article  PubMed Central  PubMed  Google Scholar 

  21. Bult CJ, Eppig JT, Blake JA, Kadin JA, Richardson JE (2013) The mouse genome database: genotypes, phenotypes, and models of human disease. Nucleic Acids Res 41(D1):D885–D891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Smith CL, Goldsmith C-A, Eppig JT (2005) The mammalian phenotype ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biol 6(1):R7

    Article  PubMed Central  PubMed  Google Scholar 

  23. Rzhetsky A, Zheng T, Weinreb C (2006) Self-correcting maps of molecular pathways. PLoS ONE 1(1):e61

    Article  PubMed Central  PubMed  Google Scholar 

  24. Iossifov I, Rodriguez-Esteban R, Mayzus I, Millen KJ, Rzhetsky A (2009) Looking at cerebellar malformations through text-mined interactomes of mice and humans. PLoS Comput Biol 5(11):e1000559

    Article  PubMed Central  PubMed  Google Scholar 

  25. Rodriguez-Esteban R, Iossifov I, Rzhetsky A (2006) Imitating manual curation of text-mined facts in biomedicine. PLoS Comput Biol 2(9):e118

    Article  PubMed Central  PubMed  Google Scholar 

  26. Smith CL, Eppig JT (2012) The mammalian phenotype ontology as a unifying standard for experimental and high-throughput phenotyping data. Mamm Genome 23(9–10):653–668

    Article  PubMed Central  PubMed  Google Scholar 

  27. Nepusz T, Yu H, Paccanaro A (2012) Detecting overlapping protein complexes in protein–protein interaction networks. Nat Methods 9(5):471–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  29. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  30. Blake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT (2011) The mouse genome database (MGD): premier model organism resource for mammalian genomics and genetics. Nucleic Acids Res 39(suppl 1):D842–D848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Nakagawa K, Conrad NK, Williams JP, Johnson BE, Kelley MJ (1995) Mechanism of inactivation of CDKN2 and MTS2 in non-small cell lung cancer and association with advanced stage. Oncogene 11(9):1843–1851

    CAS  PubMed  Google Scholar 

  32. Giaccone G (1996) Oncogenes and antioncogenes in lung tumorigenesis. Chest 109(Suppl 5):130S–134S

    Article  CAS  PubMed  Google Scholar 

  33. Eymin B, Gazzeri S, Brambilla C, Brambilla E (2001) Distinct pattern of E2F1 expression in human lung tumours: E2F1 is upregulated in small cell lung carcinoma. Oncogene 20(14):1678–1687

    Article  CAS  PubMed  Google Scholar 

  34. Hann CL, Rudin CM (2008) Management of small-cell lung cancer: incremental changes but hope for the future. Cancer 22:1486–1492

    Google Scholar 

  35. Ma Y, Gu Y, Zhang Q, Han Y, Yu S, Lu Z, Chen J (2013) Targeted degradation of KRAS by an engineered ubiquitin ligase suppresses pancreatic cancer cell growth in vitro and in vivo. Mol Cancer Ther 12(3):286–294

    Article  CAS  PubMed  Google Scholar 

  36. Fiala O, Pesek M, Finek J, Benesova L, Belsanova B, Minarik M (2013) The dominant role of G12C over other KRAS mutation types in the negative prediction of efficacy of epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Cancer Genet 206(1):26–31

    Article  CAS  PubMed  Google Scholar 

  37. Linardou H, Dahabreh IJ, Kanaloupiti D, Siannis F, Bafaloukos D, Kosmidis P, Papadimitriou CA, Murray S (2008) Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol 9(10):962–972

    Article  CAS  PubMed  Google Scholar 

  38. Verweij KJ, Zietsch BP, Medland SE, Gordon SD, Benyamin B, Nyholt DR, McEvoy BP, Sullivan PF, Heath AC, Madden PA (2010) A genome-wide association study of Cloninger’s temperament scales: implications for the evolutionary genetics of personality. Biol Psychol 85(2):306–317

    Article  PubMed Central  PubMed  Google Scholar 

  39. Moalem J, Choi DX, Khanafshar E, Ruan DT, Woeber KA, Clark OH, Kebebew E (2011) Metastatic papillary thyroid cancer misdiagnosed as non-small cell lung cancer. Thyroid 21(3):319–323

    Article  CAS  PubMed  Google Scholar 

  40. Ray BK, Dhar S, Henry C, Rich A, Ray A (2013) Epigenetic regulation by Z-DNA silencer function controls cancer-associated ADAM-12 expression in breast cancer: cross-talk between MeCP2 and NF1 transcription factor family. Cancer Res 73(2):736–744

    Article  CAS  PubMed  Google Scholar 

  41. Haber D (1997) Tumour-suppressor genes: evolving definitions in the genomic age. Nat Genet 16(4):320–322

    Article  CAS  PubMed  Google Scholar 

  42. Doddrell RD, Dun X-P, Shivane A, Feltri ML, Wrabetz L, Wegner M, Sock E, Hanemann CO, Parkinson DB (2013) Loss of SOX10 function contributes to the phenotype of human Merlin-null schwannoma cells. Brain 136(2):549–563

    Article  PubMed Central  PubMed  Google Scholar 

  43. Sekido Y, Pass HI, Bader S, Mew DJ, Christman MF, Gazdar AF, Minna JD (1995) Neurofibromatosis type 2 (NF2) gene is somatically mutated in mesothelioma but not in lung cancer. Cancer Res 55(6):1227–1231

    CAS  PubMed  Google Scholar 

  44. Goel A, Chhabra R, Ahmad S, Prasad A, Parmar V, Ghosh B, Saini N (2012) DAMTC regulates cytoskeletal reorganization and cell motility in human lung adenocarcinoma cell line: an integrated proteomics and transcriptomics approach. Cell Death Dis 3(10):e402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Salgia R, Li J-L, Ewaniuk DS, Wang Y-B, Sattler M, Chen W-C, Richards W, Pisick E, Shapiro GI, Rollins BJ (1999) Expression of the focal adhesion protein paxillin in lung cancer and its relation to cell motility. Oncogene 18(1):67

    Article  CAS  PubMed  Google Scholar 

  46. Flowers S, Xu F, Moran E (2013) Cooperative activation of tissue-specific genes by pRB and E2F1. Cancer Res 73(7):2150–2158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Maqbool SB, Mehrotra S, Kolpakas A, Durden C, Zhang B, Zhong H, Calvi BR (2010) Dampened activity of E2F1-DP and Myb-MuvB transcription factors in Drosophila endocycling cells. J Cell Sci 123(23):4095–4106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12(15):2245–2262

    Article  CAS  PubMed  Google Scholar 

  49. Zhang L, Kavanagh BD, Thorburn AM, Camidge DR (2010) Preclinical and clinical estimates of the basal apoptotic rate of a cancer predict the amount of apoptosis induced by subsequent proapoptotic stimuli. Clin Cancer Res 16(17):4478–4489

    Article  CAS  PubMed  Google Scholar 

  50. Vandin F, Upfal E, Raphael BJ (2011) Algorithms for detecting significantly mutated pathways in cancer. J Comput Biol 18(3):507–522

    Article  CAS  PubMed  Google Scholar 

  51. Matsuoka S, Yamaguchi M, Matsukage A (1994) D-type cyclin-binding regions of proliferating cell nuclear antigen. J Biol Chem 269(15):11030–11036

    CAS  PubMed  Google Scholar 

  52. Bremner R, Zacksenhaus E (2010) Cyclins, Cdks, E2f, Skp2, and more at the first international RB tumor suppressor meeting. Cancer Res 70(15):6114–6118

    Article  CAS  PubMed  Google Scholar 

  53. Mitsudomi T, Steinberg S, Nau M, Carbone D, D’amico D, Bodner S, Oie H, Linnoila R, Mulshine J, Minna J (1992) p53 gene mutations in non-small-cell lung cancer cell lines and their correlation with the presence of ras mutations and clinical features. Oncogene 7(1):171

    CAS  PubMed  Google Scholar 

  54. Goldenberg-Furmanov M, Stein I, Pikarsky E, Rubin H, Kasem S, Wygoda M, Weinstein I, Reuveni H, Ben-Sasson SA (2004) Lyn is a target gene for prostate cancer: sequence-based inhibition induces regression of human tumor xenografts. Cancer Res 64(3):1058–1066

    Article  CAS  PubMed  Google Scholar 

  55. Xu Q, Leong J, Chua QY, Chi YT, Chow PKH, Pack DW, Wang CH (2013) Combined modality doxorubicin-based chemotherapy and chitosan-mediated p53 gene therapy using double-walled microspheres for treatment of human hepatocellular carcinoma. Biomaterials 34(21):5149–5162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to express our warm thanks to Fenghe (Shanghai) Information Technology Co., Ltd. Their ideas and help gave a valuable added dimension to our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ou Bai.

Additional information

The Publisher and Editor retract this article in accordance with the recommendations of the Committee on Publication Ethics (COPE). After a thorough investigation we have strong reason to believe that the peer review process was compromised.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Bi, L., Sun, Y. et al. RETRACTED ARTICLE: Text mining and network analysis of molecular interaction in non-small cell lung cancer by using natural language processing. Mol Biol Rep 41, 8071–8079 (2014). https://doi.org/10.1007/s11033-014-3705-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3705-5

Keywords

Navigation