Skip to main content
Log in

Sampling and Learning Mallows and Generalized Mallows Models Under the Cayley Distance

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

The Mallows and Generalized Mallows models are compact yet powerful and natural ways of representing a probability distribution over the space of permutations. In this paper, we deal with the problems of sampling and learning such distributions when the metric on permutations is the Cayley distance. We propose new methods for both operations, and their performance is shown through several experiments. An application in the field of biology is given to motivate the interest of this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arora R, Meila M (2013) Consensus ranking with signed permutations. In: Artificial Intelligence and Statistics (AISTATS), volume 31 of JMLR Proceedings, pp 117–125

  • Arratia R, Barbour AD, Tavaré S (2003) Logarithmic combinatorial structures: a probabilistic approach. EMS Monographs in Mathematics. European Mathematical Society (EMS) Zürich

  • Bayer D, Diaconis P (1992) Trailing the dovetail shuffle to its lair. Ann Appl Probab 2(2):294–313

    Article  MathSciNet  MATH  Google Scholar 

  • Betzler N, Guo J, Komusiewicz C, Niedermeier R (2011) Average parameterization and partial kernelization for computing medians. J Comput Syst Sci 77(4):774–789

    Article  MathSciNet  MATH  Google Scholar 

  • Blei DM, Thomas LG, Jordan MI (2010) The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies. J ACM 57(2)

  • Bourque G, Pevzner PA (2002) Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Res 1(12):26–36

    Google Scholar 

  • Caragiannis I, Procaccia AD, Shah N (2013) When do noisy votes reveal the Truth? In: Proceedings of the Fourteenth ACM Conference on Electronic Commerce, EC ’13, pages 143–160, New York, NY, USA. ACM

  • Ceberio J, Mendiburu A, Lozano JA (2011) Introducing The Mallows Model on Estimation of Distribution Algorithms. In: International Conference on Neural Information Processing (ICONIP), number 23-25, Shanghai

  • Cheng W, Hüllermeier E (2009) A New Instance-Based Label Ranking Approach Using the Mallows Model. In: Advances in Neural Networks (ISNN), volume 5551 of Lecture Notes in Computer Science. Springer-Verlag, pp 707–716

  • Cheng W, Hullermeier E (2009) A Simple Instance-Based Approach to Multilabel Classification Using the Mallows Model. In: Workshop Proceedings of Learning from Multi-Label Data. Bled, Slovenia, pp 28–38

  • Critchlow DE (1988) Ulam’s metric. In: Encyclopedia of Statistical Sciences, vol 9, pp 379–380

  • Critchlow DE, Fligner MA, Verducci JS (1991) Probability models on rankings. J Math Psychol 35:294–318

    Article  MathSciNet  MATH  Google Scholar 

  • D’Elia A, Piccolo D (2005) A mixture model for preferences data analysis. Comput Stat Data Anal 49(3):917–934

    Article  MathSciNet  MATH  Google Scholar 

  • Deza M, Huang T (1998) Metrics on permutations, a survey. J Combinatorics Inf Syst Sci 23:173–185

    MathSciNet  MATH  Google Scholar 

  • Diaconis P (1988) Group representations in probability and statistics Institute of Mathematical Statistics

  • Diaconis P (2008) The Markov chain Monte Carlo revolution. Bull Am Math Soc 46(2):179–205

    Article  MathSciNet  MATH  Google Scholar 

  • Diaconis P, Holmes S (2002) A Bayesian Peek into Feller Volume I. Sankhya: The Indian Journal of Statistics, Series A (1961-2002), 64(3)

  • Diaconis P, Ram A (2000) Analysis of systematic scan Metropolis algorithms using Iwahori-Hecke algebra techniques. Mich Math J 48(1):157–190

    Article  MathSciNet  MATH  Google Scholar 

  • Donnelly P (1986) Partition structures, Polya urns, the Ewens sampling formula, and the ages of alleles. Theor Popul Biol 30(2):271–288

    Article  MathSciNet  MATH  Google Scholar 

  • Evans SN, Grubel R, Wakolbinger A (2012) Trickle-down processes and their boundaries. Electronic Journal of Probability, 17

  • Warren JE (1972) The sampling theory of selectively neutral alleles. Theor Popul Biol 3(1):87–112

    Article  MathSciNet  MATH  Google Scholar 

  • Feller W (1968) An Introduction to Probability Theory and Its Applications, vol 1. Wiley, New York

    MATH  Google Scholar 

  • Féray V (2013) Asymptotics of some statistics in Ewens random permutations. Electron J Probab 18(76):1–32

    MathSciNet  MATH  Google Scholar 

  • Fligner MA, Verducci JS (1986) Distance based ranking models. J R Stat Soc 48(3):359–369

    MathSciNet  MATH  Google Scholar 

  • Fligner MA, Verducci JS (1988) Multistage ranking models. J Am Stat Assoc 83(403):892–901

    Article  MathSciNet  MATH  Google Scholar 

  • Fligner MA, Verducci JS (1993) Probability models and statistical analyses for ranking data Springer-Verlag

  • Gnedin A, Olshanski G (2012) The two-sided infinite extension of the Mallows model for random permutations. Adv Appl Math 48(5):615–639

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta J, Damien P (2002) Conjugacy class prior distributions on metric-based ranking models. J R Stat Soc B 64(3):433–445

    Article  MathSciNet  MATH  Google Scholar 

  • Huang J, Guestrin C, Guibas L (2007) Efficient Inference for Distributions on Permutations. Representations, pages 1–8

  • Lebanon G, Cranking JL (2002) Combining rankings using conditional probability models on permutations. In: International Conference on Machine Learning (ICML), pp 363–370

  • Tyler L, Boutilier C (2011) Learning mallows models with pairwise preferences

  • Duncan Luce R (1959) Individual choice behavior. Wiley, New York

    MATH  Google Scholar 

  • Mallows CL (1957) Non-null ranking models. Biometrika 44(1-2):114–130

    Article  MathSciNet  MATH  Google Scholar 

  • Mandhani B, Meila M (2009) Tractable search for learning exponential models of rankings. J Mach Learn Res 5:392–399

    Google Scholar 

  • Yi M, Lebanon G (2008) Non-Parametric Modeling of partially ranked data. J Mach Learn Res 9:2401–2429

    MathSciNet  MATH  Google Scholar 

  • McCullagh P (2011) Random Permutations and Partition Models. In: International Encyclopedia of Statistical Science. Springer-Verlag, pp 1170–1177

  • Meila M, Bao L (2008) Estimation and Clustering with Infinite Rankings. In: Uncertainty in Artificial Intelligence (UAI). AUAI Press, Corvallis, Oregon, pp 393–402

  • Meila M, Chen H (2010) Dirichlet process mixtures of generalized mallows models. In: Uncertainty in Artificial Intelligence (UAI), pp 285–294

  • Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):1097–1100

    Article  MathSciNet  MATH  Google Scholar 

  • Murphy TB, Martin D (2003) Mixtures of distance-based models for ranking data. Comput Stat Data Anal 41(3-4):645–655

    Article  MathSciNet  MATH  Google Scholar 

  • Plackett RL (1975) The analysis of permutations. J R Stat Soc 24(10):193–202

    MathSciNet  Google Scholar 

  • Popov V (2007) Multiple genome rearrangement by swaps and by element duplications. Theor Comput Sci 385(1-3):115–126

    Article  MathSciNet  MATH  Google Scholar 

  • Paige ER, Rockmore DN (2011) A Mallows model for Coxeter groups and buildings. PhD thesis, Datmouth college. Hanover, New Hampshire

    Google Scholar 

  • Schadrm M (ed.) (1991) Analyzing and modeling data and knowledge Chapman & Hall

  • Starr S (2009) Thermodynamic limit for the Mallows model on S_{n}. J Math Phys 50(9):95208

    Article  MathSciNet  MATH  Google Scholar 

  • Tavaré S, Ewens WJ (1997) Multivariate Ewens distribution, chapter 41, pages 232–246 John Wiley & Sons

  • Thurstone LL (1927) A law of comparative judgment. Psychol Rev 34(4):273–286

    Article  Google Scholar 

  • Ziegler A, Christiansen E, Kriegman D, Belongie S (2012) Locally uniform comparison image descriptor. In: Advances in Neural Information Processing Systems (NIPS), pp 1–9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekhine Irurozki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irurozki, E., Calvo, B. & Lozano, J.A. Sampling and Learning Mallows and Generalized Mallows Models Under the Cayley Distance. Methodol Comput Appl Probab 20, 1–35 (2018). https://doi.org/10.1007/s11009-016-9506-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-016-9506-7

Keywords

Mathematics Subject Classification (2010)

Navigation