Skip to main content
Log in

Algebraic Kripke-Style Semantics for Relevance Logics

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

This paper deals with one kind of Kripke-style semantics, which we shall call algebraic Kripke-style semantics, for relevance logics. We first recall the logic R of relevant implication and some closely related systems, their corresponding algebraic structures, and algebraic completeness results. We provide simpler algebraic completeness proofs. We then introduce various types of algebraic Kripke-style semantics for these systems and connect them with algebraic semantics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. These semantics are not necessarily non-operational, e.g., semantics for relevance logics generally have a star (∗) operation for negation (see [21]).

  2. As Yang pointed out, there is “another trend of four-valued semantics for relevance logic …, combining Routley–Meyer semantics for relevance logic and Dunn’s four-valued semantics for the logic of first-degree entailments.” ([61], p. 257).

  3. Here the term ‘algebraic semantics’ is used in the broad sense that it means not merely algebraic semantics in the strict sense, the semantics distinguished from matrix semantics, but also matrix semantics, cf. see [14].

  4. We use the notation & in place of ∘ to express the fusion in order to avoid unnecessary confusion because the latter notation is also used as a restricted operational symbol in Section 3.

  5. For the more exact definition, see Section 3.1.

  6. In [2830], these systems were introduced without much consideration of relevance itself.

  7. For unexplained notions, notations, and terminology of universal algebra and algebraic semantics used in this paper, see [10, 11, 13, 14, 28].

  8. A weakly implicative logic \(\mathcal {L}\) is a logic satisfying A1, (mp), transitivity (\(\varphi \rightarrow \psi , \psi \rightarrow \chi \vdash \varphi \rightarrow \chi \)), and symmetrized congruence, i.e., congruence w.r.t. connectives, see [11, 13] for more details.

  9. A unital quantale is a complete FL-algebra introduced in [44], and every unital quantale is isomorphic to a phase structure (see [45]).

References

  1. Allwein, G., & Dunn, J.M. (1993). Kripke models for linear logics. Journal of Symbolic Logic, 58, 514–545.

    Article  Google Scholar 

  2. Anderson, A.R., & Belnap, N.D. (1975). Entailment: The logic of relevance and necessity (Vol. 1). Princeton: Princeton Univ. Press.

    Google Scholar 

  3. Anderson, A.R., Belnap, N.D., Dunn, J.M. (1992). Entailment: The logic of relevance and necessity (Vol. 2). Princeton: Princeton Univ. Press.

    Google Scholar 

  4. Bimbo, K., & Dunn, J.M. (2002). Four-valued logic. Notre Dame Journal of Formal Logic, 42, 171–192.

    Google Scholar 

  5. Bimbo, K., & Dunn, J.M. (2008). Generalized Galois logics. Standford: CSLI.

    Google Scholar 

  6. Brady, R. (1991). Gentzenization and decidability of some contraction-less relevant logics. Journal of Philosophical Logic, 20, 97–117.

    Article  Google Scholar 

  7. Brady, R. (1991). Gentzenization of relevant logics without distribution I. Journal of Symbolic Logic, 61, 353–378.

    Article  Google Scholar 

  8. Brady, R. (1991). Gentzenization of relevant logics without distribution II. Journal of Symbolic Logic, 61, 379–401.

    Article  Google Scholar 

  9. Brady, R. (Ed.) (2003) Relevant logics and their rivals (Vol. 2). Burlington: Ashgate.

  10. Burris, S., & Sankappanaver, H.P. 1981. A course in universal algebra. New York: Springer.

    Book  Google Scholar 

  11. Cintula, P. (2006). Weakly implicative (Fuzzy) logics I: basic properties. Archive for Mathematical Logic, 45, 673–704.

    Article  Google Scholar 

  12. Cintula, P., Esteva, F., Gispert, J., Godo, L., Montagna, F., Noguera, C. (2009). Distinguished algebraic semantics for t-norm based fuzzy logics. Annals of Pure and Applied Logic, 160, 53–81.

    Article  Google Scholar 

  13. Cintula, P., & Noguera, C. (2011). A general framework for mathematical fuzzy logic. In P. Cintula, P. Hájek, C. Noguera (Eds.), Handbook of mathematical fuzzy logic (Vol. 1, pp. 103–207). London: College Publications.

  14. Czelakowski, J. (2001). Protoalgebraic logics. Dordrecht: Kluwer.

    Book  Google Scholar 

  15. Davey, B.A., & Priestley, H.A. (2002). Introduction to lattices and order, 2nd ed. Cambridge: Cambridge Univ. Press.

    Book  Google Scholar 

  16. Diaconescu, D., & Georgescu, G. (2007). On the forcing semantics for monoidal t-norm based logic. Journal of Universal Computer Science, 13, 1550–1572.

    Google Scholar 

  17. Došen, K. (1988). Sequent systems and groupoid models I. Studia Logica, 47, 353–385.

    Article  Google Scholar 

  18. Došen, K. (1989). Sequent systems and groupoid models II. Studia Logica, 48, 41–65.

    Article  Google Scholar 

  19. Dunn, J.M. (1970). Algebraic completeness for R-Mingle and its extension. Journal of Symbolic Logic, 35, 1–13.

    Article  Google Scholar 

  20. Dunn, J.M. (1976). A Kripke-style semantics for R-Mingle using a binary accessibility relation. Studia Logica, 35, 163–172.

    Article  Google Scholar 

  21. Dunn, J.M. (1986). Relevance logic and entailment. In D. Gabbay, & F. Guenthner (Eds.), Handbook of philosophical logic (pp. 117-224). Dordrecht: Reidel.

    Google Scholar 

  22. Dunn, J.M. (2000). Partiality and its dual. Studia Logica, 66, 5–40.

    Article  Google Scholar 

  23. Dunn, J.M., & Restall, G. (2002). Relevance logic. In D. Gabbay, & F. Guenthner (Eds.), Handbook of philosophical logic, 2nd edn. (Vol. 6, pp. 1–128). Dordrecht: Reidel.

    Chapter  Google Scholar 

  24. Dzobiak, W. (1981). Non-existence of a countable strongly adequate matrix semantics for neighbors of E. Bulletin of the Section of Logic, 10, 177–180.

    Google Scholar 

  25. Esteva, F., & Godo, L. (2001). Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets and Systems, 124, 271–288.

    Article  Google Scholar 

  26. Fine, K. (1974). Models for entailment. Journal of Philosophical Logic, 3, 347–372.

    Article  Google Scholar 

  27. Fine, K. (1988). Semantics for quantified relevance logic. Journal of Philosophical Logic, 17, 27–59.

    Article  Google Scholar 

  28. Galatos, N., Jipsen, P., Kowalski, T., Ono, H. (2007). Residuated lattices: an algebraic glimpse at substructural logics. Amsterdam: Elsevier.

    Google Scholar 

  29. Galatos, N., & Ono H. (2006). Algebraization, parameterized local deduction theorem and interpretation for substructural logics over FL. Studia Logica, 83, 279–308.

    Article  Google Scholar 

  30. Galatos, N., & Ono, H. (2006). Glivenko theorems for substructural logics over FL. Journal of Symbolic Logic, 71, 1353–1384.

    Article  Google Scholar 

  31. Hájek, P. (1998). Metamathematics of fuzzy logic. Amsterdam: Kluwer.

    Book  Google Scholar 

  32. Komori, Y. (1986). Predicate logics without structural rules. Studia Logica, 45, 393–404.

    Article  Google Scholar 

  33. Kripke, S. (1963). Semantic analysis of modal logic I: normal modal propositional calculi. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 9, 67–96.

    Google Scholar 

  34. Kripke, S. (1965). Semantic analysis of intuitionistic logic I. In J. Crossley, & M. Dummett (Eds.), Formal systems and recursive functions (pp. 92–129). Amsterdam: North-Holland Publ. Co.

    Chapter  Google Scholar 

  35. Kripke, S. (1965). Semantic analysis of modal logic II. In J. Addison, L. Henkin, A. Tarski (Eds.), The theory of models (pp. 206–220). Amsterdam: North-Holland Publ. Co.

    Google Scholar 

  36. Metcalfe, G., & Montagna, F. (2007) Substructural fuzzy logics. Journal of Symbolic Logic, 72, 834–864.

    Article  Google Scholar 

  37. Meyer, R.K., Dunn, J.M., Leblanc, H. (1976). Completeness of relevant quantification theories. Notre Dame Journal of Formal Logic, 15, 97–121.

    Article  Google Scholar 

  38. Montagna, F., & Ono, H. (2002). Kripke semantics, undecidability and standard completeness for Esteva and Godo’s logic MTL∀. Studia Logica, 71, 227–245.

    Article  Google Scholar 

  39. Montagna, F., & Sacchetti, L. (2003). Kripke-style semantics for many-valued logics. Mathematical Logic Quarterly, 49, 629–641.

    Article  Google Scholar 

  40. Montagna, F., & Sacchetti, L. (2004). Corrigendum to Kripke-style semantics for many-valued logics. Mathematical Logic Quarterly, 50, 104–107.

    Article  Google Scholar 

  41. Niefield, S.B., & Rosental, K.I. (1988). Constructing locales from quantales. Mathematical Proceedings of the Cambridge Philosophical Society, 104, 215–234.

    Article  Google Scholar 

  42. Novak, V. (1990). On the syntactico-semantical completeness of first-order fuzzy logic I , II. Kybernetika, 26, 47–66.

    Google Scholar 

  43. Ono, H. (1985). Semantic analysis of predicate logics without the contraction rule. Studia Logica, 44, 187–196.

    Article  Google Scholar 

  44. Ono, H. (1992). Algebraic aspect of logics without structural rules. In L.A. Bokut, Y.L. Ershov, O.H. Kegal, A.I. Kostrikin (Eds.), Contemporary mathematics, Vol. 131 (part 3), Proceedings of the international conference on algebra honoring A. Mal’cev (pp 601–621). Novosibirsk, 1989: American Mathematical Society.

  45. Ono, H. (1993). Semantics for substructural logics. In P. Schroeder-Heister, & K. Dosen (Eds.), Substructural logics (pp. 259–291). Oxford: Clarendon.

    Google Scholar 

  46. Ono, H., & Komori, Y. (1985). Logics without the contraction rule. Journal of Symbolic Logic, 50, 169–201.

    Article  Google Scholar 

  47. Read, S. (1988). Relevant logic. Oxford: Basil Blackwell.

    Google Scholar 

  48. Restall, G. (1995). Four-valued semantics for relevant logics (and some of their rivals). Journal of Philosophical Logic, 24, 139–160.

    Article  Google Scholar 

  49. Restall, G. (2000). An introduction to substructural logics. New York: Routledge.

    Google Scholar 

  50. Rosental, K.I. (1990). A note on Girard quantales. Cahiers de Topologie et Géometrie Différentielle Catégoriques, 31, 3–11.

    Google Scholar 

  51. Rosental, K.I. (1990). Quantales and their applications. Pitman research notes in mathematics series, Vol. 234, Longman Scientific & Technical.

  52. Routley, R., & Meyer, R.K. (1972). The semantics of entailment (II). Journal of Philosophical Logic, 1, 53–73.

    Article  Google Scholar 

  53. Routley, R., & Meyer, R.K. (1972). The semantics of entailment (III). Journal of Philosophical Logic, 1, 192–208.

    Article  Google Scholar 

  54. Routley, R., & Meyer, R.K. (1973). The semantics of entailment (I). In H. Lebranc (Ed.), Truth, syntax, and modality (pp. 199–243). Amsterdam: North-Holland Publ. Co.

    Chapter  Google Scholar 

  55. Routley, R., Plumwood, V., Meyer, R.K., Brady, R. (1982). Relevant logics and their rivals (Vol. 1). Atascadero: Ridgeview Publ. Co.

    Google Scholar 

  56. Thomason, R.H. (1969). A semantic study of constructive falsity. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 15, 247–257.

    Article  Google Scholar 

  57. Urquhart, A. (1972). Semantics for relevant logics. Journal of Symbolic Logic, 37, 159–169.

    Article  Google Scholar 

  58. Urquhart, A. (1986). Many-valued logic. In D. Gabbay, & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. III, pp. 71–116). Dordrecht: Reidel.

    Chapter  Google Scholar 

  59. Yang, E. (2002). T-R, TE-R, TEc-R. Bulletin of the Section of Logic, 31, 171–181.

    Google Scholar 

  60. Yang, E. (2004). Routley–Meyer semantics for some weak Boolean logics, and some translations. Logic Journal of the IGPL, 12, 355–369.

    Article  Google Scholar 

  61. Yang, E. (2009). (Star-based) four-valued Kripke-style semantics for some neighbors of E, R, T. Logique et Analyse, 207, 255–280.

    Google Scholar 

  62. Yang, E. (2012). (Star-based) three-valued Kripke-style semantics for pseudo- and weak-Boolean logics. Logic Journal of the IGPL, 20, 187–206.

    Article  Google Scholar 

  63. Yang, E. (2012). Kripke-style semantics for UL. Korean Journal of Logic, 15, 1–15.

    Google Scholar 

  64. Yang, E. (2012). R, Fuzzy R, and algebraic Kripke-style semantics. Korean Journal of Logic, 15, 207–221.

    Google Scholar 

  65. Yang, E. (2012). R and relevance principle revisited. Journal of Philosophical Logic. doi:10.1007/s10992-012-9747-1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunsuk Yang.

Additional information

I must thank the referees for their helpful comments and suggestions for improvements to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, E. Algebraic Kripke-Style Semantics for Relevance Logics. J Philos Logic 43, 803–826 (2014). https://doi.org/10.1007/s10992-013-9290-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-013-9290-6

Keywords

Navigation