Skip to main content
Log in

A Novel Antimicrobial Peptide Derived from the Insect Paederus dermatitis

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Much research has been focused on antimicrobial peptides (AMPs) derived from insect immune defense reactions due to their potential in the development of new antibiotics. In this study, a new AMP from the insect Paederus dermatitis, named sarcotoxin Pd was identified and purified using gel filtration and reverse-phase high-performance liquid chromatography. Our results showed that this peptide has broad-spectrum inhibitory effects on examined microbes. Sarcotoxin Pd is composed of 34 amino acids and its molecular weight was estimated to be 3613.26 ± 0.5 Da. Minimum inhibitory concentration (MIC) values of sarcotoxin Pd against Gram-negative bacteria were lower than Gram-positive bacteria and fungi. The identified peptide showed the highest antimicrobial effect against Klebsiella pneumonia and Escherichia coli. This peptide did not reveal significant hemolytic activity against human red blood cells particularly in the range of MIC values. Confirming the potential antimicrobial activities of synthetic peptide, this paper addresses the role of sarcotoxin Pd in the treatment of systemic microbial illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amiri A, Zare Zardini H, Shanbedi M, Maghrebi M, Baniadam M (2012) Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion. Mater Lett 72:153–156

    Article  CAS  Google Scholar 

  • Armstrong RK, Winfield JL (1969) Paederus fuscipes dermatitis. Am J Trop Med Hyg 18:147–150

    PubMed  CAS  Google Scholar 

  • Asoodeh A, Zare Zardini H, Chamani J (2012) Identification and characterization of two novel antimicrobial peptides, temporin-Ra and temporin-Rb, from skin secretions of the marsh frog (Rana ridibunda). J Pepet Sci 18:10–16

    Article  CAS  Google Scholar 

  • Baek JH, Ji Y, Shin JS, Lee S, Lee SH (2011) Venom peptides from solitary hunting wasps induce feeding disorder in lepidopteran larvae. Peptides 32:568–572

    Article  PubMed  CAS  Google Scholar 

  • Bensch KW, Raida M, Mgert HJ, Schulz-Knappe P, Forssmann W-G (1995) hBD-1: a novel α-defensin from human plasma. FEBS Lett 368:331–335

    Article  PubMed  CAS  Google Scholar 

  • Boman HG (1991) Antibacterial peptides: key components needed in immunity. Cell 65:205–207

    Article  PubMed  CAS  Google Scholar 

  • Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92

    Article  PubMed  CAS  Google Scholar 

  • Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254:197–215

    Article  PubMed  CAS  Google Scholar 

  • Bullet P, Urge L, Ohresser S, Hetru C, Otvos L (1996) Enlarged scale chemical synthesis and range of activity of drosocin, an O-glycosylated antibacterial peptide of drosophila. Eur J Biochem 238:64–69

    Article  Google Scholar 

  • Bullet P, Hetru C, Dimarcq JL, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 23:329–344

    Article  Google Scholar 

  • Bullet P, Charlet M, Hetru C (2003) In: Ezekowitz RAB, Hoffmann JA (eds) In innate immunity. Humana Press, Totowa, pp 89–107

  • Conlon JM (2008) Reflections on a systematic nomenclature for antimicrobial peptides from the skins of frogs of the family Ranidae. Peptides 29:1815–1819

    Article  PubMed  CAS  Google Scholar 

  • Cunliffe RN, Mahida YR (2004) Expression and regulation of antimicrobial peptides in the gastrointestinal tract. J Leukoc Biol 75:49–58

    Article  PubMed  CAS  Google Scholar 

  • Dürr M, Peschel A (2002) Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defense. Infect Immun 70:6515–6517

    Article  PubMed  Google Scholar 

  • Esteves E, Fogaça AC, Maldonado R, Silva FD, Manso PP, Pelajo-Machado M, Valle D, Daffre S (2009) Antimicrobial activity in the tick Rhipicephalus (Boophilus) microplus eggs: cellular localization and temporal expression of microplusin during oogenesis and embryogenesis. Dev Comp Immunol 33:913–919

    Article  PubMed  CAS  Google Scholar 

  • Gelmetti C, Grimalt R (1993) Paederus dermatitis: an easy diagnosable but misdiagnosed eruption. Eur J Pediatr 152:6–8

    Article  PubMed  CAS  Google Scholar 

  • Gnanaraj P, Venugopal V, Mozhi MK, Pandurangan CN (2007) An outbreak of Paederus dermatitis in a suburban hospital in South India: a report of 123 cases and review of literature. J Am Acad Dermatol 57:297–300

    Article  PubMed  Google Scholar 

  • Godballe T, Nilsson LL, Petersen PD, Jenssen H (2011) Antimicrobial β-peptides and α-peptoids. Chem Biol Drug Des 77:107–116

    Article  PubMed  CAS  Google Scholar 

  • Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323

    PubMed  CAS  Google Scholar 

  • Hancock REW, Diamond G (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 8:402–410

    Article  PubMed  CAS  Google Scholar 

  • Hancock REW, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotech 24:1551–1557

    Article  CAS  Google Scholar 

  • Hoffmann JA, Hetru C, Reichhart J-M (1993) The humoral antibacterial response of Drosophila. FEBS Lett 325:63–66

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RAB (1999) Phylogenetic perspectives in innate immunity. Science 284:1313–1318

    Article  PubMed  CAS  Google Scholar 

  • Hwang JS, Lee J, Kim YJ, Bang HS, Yun EY, Kim SR, Suh HJ, Kang BR, Nam SH, Jeon JP, Kim I, Lee DG (2009) Isolation and characterization of a defensin-like peptide (coprisin) from the dung beetle, Copris tripartitus. Int J Pept 2009:136284

    PubMed  Google Scholar 

  • Iwai H, Nakajima Y, Natori S, Arata Y, Shimada I (1993) Solution conformation of an antibacterial peptide, sarcotoxin IA, as determined by 1H-NMR. Eur J Biochem 217:639–644

    Article  PubMed  CAS  Google Scholar 

  • Kang C, Son SY, Bang I (2008) Biologically active and C-amidated hinnavinII-38-Asn produced from a Trx fusion construct in Escherichia coli. J Microbiol 46:656–661

    Article  PubMed  CAS  Google Scholar 

  • Kang JK, Hwang JS, Nam HJ, Ahn KJ, Seok H, Kim S-K, Yun EY, Pothoulakis C, Lamont JT, Kim H (2011) The insect peptide Coprisin prevents clostridium difficile-mediated acute inflammation and mucosal damage through selective antimicrobial activity. Antimicrob Agents Chemother 55:4850–4857

    Article  PubMed  CAS  Google Scholar 

  • Katarina B, Jaroslav K, Jan K, Jozef S (2002) Identification of honeybee peptide active against Paenibacillus larvae larvae through bacterial growth-inhibition assay on polyacrylamide gel. Apidologie 33:259–269

    Article  Google Scholar 

  • Kulkarni MM, Barbi J, McMaster WR, Gallo RL, Satoskar AR, McGwire BS (2011) Mammalian antimicrobial peptide influences control of cutaneous Leishmania infection. Cell Microbiol 13:913–923

    Article  PubMed  CAS  Google Scholar 

  • Lauth X, Nesin A, Briand JP, Roussel JP, Hetru C (1998) Isolation, characterization and chemical synthesis of a new insect defensin from Chironomus plumosus (Diptera). Insect Biochem Molec 28:1059–1066

    Article  CAS  Google Scholar 

  • Lu Y, Li J, Yu H, Xu X, Liang J, Tian Y, Ma D, Lin G, Huang G, Lai R (2006) Two families of antimicrobial peptides with multiple functions from skin of rufous-spotted torrent frog, Amolops loloensis. Peptides 27:3085–3091

    Article  PubMed  CAS  Google Scholar 

  • Manners JM (2009) Primitive defence: the MiAMP1 antimicrobial peptide family. Plant Mol Biol Rep 27:237–242

    Article  CAS  Google Scholar 

  • Matsuyama K, Natori S (1990) Mode of action of sapecin, a novel antibacterial protein of Sarcophaga peregrina (flesh fly). J Biochem-Tokyo 108:128–132

    PubMed  CAS  Google Scholar 

  • Memarpoor-Yazdi M, Asoodeh A, Chamani J (2012) A novel antioxidant and antimicrobial peptide from hen egg white lysozyme hydrolysates. J Funct Foods 4:278–286

    Article  CAS  Google Scholar 

  • Montaño AM, Tsujino F, Takahata N, Satta Y (2011) Evolutionary origin of peptidoglycan recognition proteins in vertebrate innate immune system. BMC Evol Biol 11:1471–2148

    Article  Google Scholar 

  • Nicholls DS, Christmas TI, Greig DE (1990) Oedemerid blister beetle dermatosis: a review. J Am Acad Dermatol 22:815–819

    Article  PubMed  CAS  Google Scholar 

  • Rees JA, Moniatte M, Bullet P (1997) Novel antibacterial peptides isolated from a European bumblebee, Bombus pascuorum (Hymenoptera, apoidea). Insect Biochem Molec 27:413–422

    Article  CAS  Google Scholar 

  • Romanelli A, Moggio L, Montella RC, Campiglia P, Iannaccone M, Capuano F, Pedone C, Capparelli R (2011) Peptides from Royal Jelly: studies on the antimicrobial activity of jelleins, jelleins analogs and synergy with temporins. J Pepet Sci 17:348–352

    Article  CAS  Google Scholar 

  • Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22

    Article  PubMed  Google Scholar 

  • Shao Z-Y, Mao H-X, Fu W-J, Ono M, Wang D-S, Bonizzoni M, Zhang Y-P (2004) Genetic structure of Asian populations of Bombus ignitus (Hymenoptera: Apidae). J Hered 95:46–52

    Article  PubMed  CAS  Google Scholar 

  • Silverstein KA, Moskal WA Jr, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA (2007) Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J 51:262–280

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248

    Article  PubMed  CAS  Google Scholar 

  • Taguchi S, Mita K, Ichinohe K, Hashimoto S (2009) Targeted engineering of the antibacterial peptide apidaecin, based on an in vivo monitoring assay system. Appl Environ Microbiol 75:1460–1464

    Article  PubMed  CAS  Google Scholar 

  • Toke O (2005) Antimicrobial peptides: new candidates in the fight against bacterial infections. Pept Sci 80:717–735

    Article  CAS  Google Scholar 

  • Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Pept Sci 55:4–30

    Article  CAS  Google Scholar 

  • Wang H, Lu Y, Zhang X, Hu Y, Yu H, Liu J, Sun J (2009) The novel antimicrobial peptides from skin of Chinese broad-folded frog, Hylarana latouchii (Anura:Ranidae). Peptides 30:273–282

    Article  PubMed  Google Scholar 

  • Yang J, Furukawa S, Sagisaka A, Ishibashi J, Taniai K, Shono T, Yamakawa M (1999) cDNA cloning and gene expression of cecropin D, an antibacterial protein in the silkworm, Bombyx mori. Comp Biochem Physiol B 122:409–414

    Article  PubMed  CAS  Google Scholar 

  • Zairi A, Tangy F, Bouassida K, Hani K (2009) Dermaseptins and magainins: antimicrobial peptides from frogs’ skin-new sources for a promising spermicides microbicides. J Biomed Biotechnol 2009:452567

    Article  PubMed  Google Scholar 

  • Zardini HZ, Amiri A, Shanbedi M, Maghrebi M, Baniadam M (2012) Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloid Surf Ace B 92:196–202

    Article  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Young Researchers Club from Islamic Azad University, Yazd, Iran for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Zare-Zardini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Memarpoor-Yazdi, M., Zare-Zardini, H. & Asoodeh, A. A Novel Antimicrobial Peptide Derived from the Insect Paederus dermatitis . Int J Pept Res Ther 19, 99–108 (2013). https://doi.org/10.1007/s10989-012-9320-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-012-9320-1

Keywords

Navigation