Skip to main content
Log in

Catalytic effect of copper(II) oxide on oxidation of cellulosic biomass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The reuse and recycling of biomass materials can minimize the environmental impact of society, and can help create a sustainable community. Although cellulosic biomass from demolished buildings is a promising resource for recycling, contaminants, such as wood preservatives that likely contain metal oxides, are found in recycled wood dust. These oxides could act as catalysts for the oxidation of organic materials, resulting in spontaneous ignition of large piles of recycled wood dust. Copper(II) oxide (CuO) is major component in wood preservative and plays a catalytic role in the oxidation of cellulose, which could cause spontaneous ignition. The present study focused on the influence of CuO on oxidation of cellulose. The exothermal behavior and mass loss of cellulose/CuO mixtures were investigated. Changes in exothermal behavior and mass loss with an increasing amount of CuO were measured by differential scanning calorimetry and thermogravimetry. In addition, kinetics and spectroanalysis were conducted to determine the catalytic effect of CuO on oxidation of cellulose and help determine the oxidation model of cellulose upon addition of CuO. Results revealed a change in exothermal behavior and increase in mass loss with increasing amounts of CuO. In addition, CuO had a catalytic effect on the oxidation of cellulose, which helped determine the oxidation model of cellulose upon addition of CuO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yang S, Liu Z, Huang X, Zhang B. Wet air oxidation of epoxy acrylate monomer industrial wastewater. J Hazard Mater. 2010;178:786–91.

    Article  CAS  Google Scholar 

  2. Date S, Itadzu N, Sugiyama T, Miyata Y, Iwakuma K, Abe M, Yoshitake K, Nishi S, Hasue K. A study on the combustion of guanidium 1, 5′-bis-1H-tetrazolate/copper(II) oxide. Sci Technol Energetic Mater. 2009;70:152–7.

    CAS  Google Scholar 

  3. Wachs IE. Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catal Today. 2005;100:79–94.

    Article  CAS  Google Scholar 

  4. Miyata Y, Morita K, Iwakuma K, Abe M, Date S, Hasue K. Burning characteristics of the consolidated mixtures of aminoguanidium 5, 5′-azobis-tetrazolate and copper(II) oxide. Sci Technol Energetic Mater. 2007;68:153–9.

    CAS  Google Scholar 

  5. Li XR, Koseki H, Momota M. Evaluation of danger from fermentation-induced spontaneous ignition of wood chips. J Hazard Mater. 2006;135:15–20.

    Article  Google Scholar 

  6. Miyake A, Morioka K. Influence of metal oxides on the thermal ignition behaviour of woody biomass cellulose. Sci Technol Energetic Mater. 2011;72:123–6.

    CAS  Google Scholar 

  7. Kato K. Pyrolysis of cellulose part III. Comparative studies of the volatile compounds from pyrolysates of cellulose and its related compound. Agric Biol Chem. 1967;31:657–63.

    Article  CAS  Google Scholar 

  8. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  9. Soares S, Camino G, Levchik S. Effect of metal carboxylates on the thermal decomposition of cellulose. Polym Degrad Stab. 1988;62:25–31.

    Article  Google Scholar 

  10. Aggarwal P, Dollimore D, Heon K. Comparative thermal analysis study of two biopolymers, starch and cellulose. J Therm Anal Calorim. 1997;50:7–17.

    Article  CAS  Google Scholar 

  11. Tian CM, Xie JX, Guo HZ, Xu JZ. The effect of metal ions of thermal oxidative degradation of cotton cellulose ammonium phosphate. J Therm Anal Calorim. 2003;73:827–34.

    Article  CAS  Google Scholar 

  12. Maekawa M, Nohmi T. Thermal decomposition of cellulose and it’s roasted odor. J Mass Spectrom Soc Jpn. 1998;46:308–16 (in Japanese).

    Article  CAS  Google Scholar 

  13. Hirata T, Maekawa M, Nohmi T. Model of thermal decomposition mechanisms of cellulose and problems of analysis. J Mass Spectrom Soc Jpn. 1998;46:259–74 (in Japanese).

    Article  CAS  Google Scholar 

  14. Liodakis SE, Statheropoulos MK, Tzamtzis NE, Pappa AA, Parissakis GK. The effect of salt and oxide-hydroxide additives on the pyrolysis of cellulose and Pinus halepensis pine needles. Thermochem Acta. 1996;278:99–108.

    Article  CAS  Google Scholar 

  15. Bilbao R, Mastral JF, Aldea ME, Ceamanos J. The influence of the percentage of oxygen in the atmosphere on the thermal decomposition of lignocellulosic materials. J Anal Appl Pyrolysis. 1997;42:189–202.

    Article  CAS  Google Scholar 

  16. Arseneau DF. Competitive reactions in the thermal decomposition of cellulose. Can J Chem. 1971;49:632–8.

    Article  CAS  Google Scholar 

  17. Gaan S, Sun G. Effect of nitrogen additives on thermal decomposition of cotton. J Anal Appl Pyrolysis. 2009;84:108–15.

    Article  CAS  Google Scholar 

  18. Kato K, Takahashi N. Pyrolysis of cellulose part II. Thermogravimetric analysis and determination of carbonyl and carboxyl groups in pyrocellulose. Agric Biol Chem. 1967;31:519–24.

    Article  CAS  Google Scholar 

  19. Scheirs J, Camino G, Tumiatti W. Overview of water evolution during the thermal degradation of cellulose. Eur Polym J. 2001;37:933–42.

    Article  CAS  Google Scholar 

  20. Mamleev V, Bourbigot S, Bras ML, Yvon J, Lefebvre J. Model-free method for evaluation of activation energies on modulated thermogravimetry and analysis of cellulose decomposition. Chem Eng Sci. 2006;61:1276–92.

    Article  CAS  Google Scholar 

  21. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  22. Ozawa T. Non-isothermal kinetics (1) single elementary process. Netsu Sokutei. 2004;31:125–32. (in Japanese).

    CAS  Google Scholar 

  23. Zhan D, Cong C, Diakite K, Tao Y, Zhang K. Kinetics of thermal decomposition of nickel oxalate dihydrate in air. Thermochem Acta. 2005;430:101–5.

    Article  CAS  Google Scholar 

  24. Barud HS, Riberio CA, Capela JMV, Crespi MS, Ribeiro SJL, Messadeq Y. Kinetic parameters for thermal decomposition of microcrystalline, vegetal, and bacterial cellulose. J Therm Anal Calorim. 2011;105:421–6.

    Article  CAS  Google Scholar 

  25. Agrawal RK. Kinetics of reactions involved in pyrolysis of cellulose I. The three reaction model. Can J Chem Eng. 1988;66:403–12.

    Article  CAS  Google Scholar 

  26. Agrawal RK. Kinetics of reactions involved in pyrolysis of cellulose II. The modified Kilzer–Broido model. Can J Chem Eng. 1988;66:413–8.

    Article  CAS  Google Scholar 

  27. Mamleev V, Bourbigot S, Yvon J. Kinetic analysis on the thermal decomposition of cellulose: the change of the rate limitation. J Anal Appl Pyrolysis. 2007;80:141–50.

    Article  CAS  Google Scholar 

  28. Mamleev V, Bourbigot S, Yvon J. Kinetic analysis on the thermal decomposition of cellulose: the main step of mass loss. J Anal Appl Pyrolysis. 2007;80:151–65.

    Article  CAS  Google Scholar 

  29. Milosavljevic I, Suuberg EM. Cellulose thermal decomposition kinetics: global mass loss kinetics. Ind Eng Chem Res. 1995;34:1081–91.

    Article  CAS  Google Scholar 

  30. Conesa JA, Caballero A, Marcilla A, Font R. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochem Acta. 1995;254:175–92.

    Article  CAS  Google Scholar 

  31. Capart R, Khezami L, Burnham AK. Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochem Acta. 2004;417:79–89.

    Article  CAS  Google Scholar 

  32. Hirata T. Effects of inorganic salts on pyrolysis of wood and cellulose, measured with thermogravimetric and differential thermal analysis techniques. I Kinetics of the pyrolysis of untreated wood and cellulose in vacuo. Bull Exp Sta. 1974;263:1–16.

    CAS  Google Scholar 

  33. Jandura P, Riedl B, Kokta BV. Thermal degradation behavior of cellulose fibers partially esterified with some long chain organic acids. Polym Degrad Stab. 2000;70:387–94.

    Article  CAS  Google Scholar 

  34. Cabrales L, Abidi N. On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim. 2010;102:485–91.

    Article  CAS  Google Scholar 

  35. Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

    Article  CAS  Google Scholar 

  36. Zhu P, Sui S, Wang B, Sun K, Sun G. A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY-GC-MS. J Anal Appl Pyrolysis. 2004;71:645–55.

    Article  CAS  Google Scholar 

  37. Li S, Lyons-Hart J, Banyasz J, Shafer K. Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel. 2001;80:1809–17.

    Article  CAS  Google Scholar 

  38. Hosoya T, Kawamoto H, Saka S. Different pyrolytic pathways of levoglucosan in vapor- and liquid/solid-phases. J Anal Appl Pyrolysis. 2008;83:64–70.

    Article  CAS  Google Scholar 

  39. Shen DK, Gu S. The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol. 2009;100:6496–504.

    Article  CAS  Google Scholar 

  40. Uddin MA, Tsuda H, Wu S, Sasaoka E. Catalytic decomposition of biomass tars with iron oxide catalysts. Fuel. 2008;87:451–9.

    Article  CAS  Google Scholar 

  41. Wang S, Liu Q, Liao Y, Luo Z, Cen K. A study on the mechanism research on cellulose pyrolysis under catalysis of metallic salts. Korean J Chem Eng. 2007;24:336–40.

    Article  CAS  Google Scholar 

  42. Liu Q, Zhong Z, Wang S, Luo Z. Interactions of biomass components during pyrolysis: a TG-FTIR study. J Anal Appl Pyrolysis. 2011;90:213–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsumi Miyake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakayama, J., Miyake, A. Catalytic effect of copper(II) oxide on oxidation of cellulosic biomass. J Therm Anal Calorim 110, 321–327 (2012). https://doi.org/10.1007/s10973-011-2162-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2162-9

Keywords

Navigation