Skip to main content
Log in

Synthesis of high surface area nanocrystalline anatase-TiO2 powders derived from particulate sol-gel route by tailoring processing parameters

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Stabilised titania sols were prepared using an additive free particulate sol-gel route, via electrostatic stabilisation mechanism, with various processing parameters. Peptisation temperature, 50°C and 70°C, and TiO2 concentration, 0.1, 0.2 and 0.4 molar, were chosen as processing parameters during sol preparation. Results from TiO2 particle size and zeta potential of sols revealed that the smallest titania hydrodynamic diameter (13 nm) and the highest zeta potential (47.7 mV) were obtained for the sol produced at the lower peptisation temperature of 50°C and lower TiO2 concentration of 0.1 M. On the other hand, between the sols prepared at 70°C, smaller titania particles (20 nm) and higher zeta potential (46.3 mV) were achieved with increasing TiO2 concentration up to 0.4 M. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) results of produced powders annealed at different temperatures showed that the 300°C annealed powder made from 0.1 M sol prepared at 50°C was a mixture of anatase and brookite, corresponding to a major phase of anatase (∼95% estimated), with the smallest average crystallite size of 1.3 nm and the highest specific surface area (SSA) of 193 m2/g. Furthermore, increasing TiO2 concentration up to 0.4 molar for the sols prepared at 70°C resulted in decreasing the average crystallite size (1.9 nm at 300°C) and increasing SSA (116 m2/g at 300°C) of the powders annealed at different temperatures. Anatase-to-rutile phase transformation temperature was increased with decreasing peptisation temperature down to 50°C, whereas TiO2 concentration had no effect on this transition. Anatase percentage increased with decreasing both peptisation temperature and TiO2 concentration. Such prepared powders can be used in many applications in areas from photo catalysts to gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonini N, Carotta MC, Chiorini A, Guidi V, Malagu C, Martinelli G, Paglialonga L, Sacerdoti M (2000) Sensors Actuators B 68:274

    Article  Google Scholar 

  2. Perera VPS, Jayaweera PVV, Pitigala PKDDP, Andaranayake PKMB, Hastings G, Perera AGU, Tennakone K (2004) Synth Met 143:283

    Article  CAS  Google Scholar 

  3. Mao D, Lu G, Chen Q (2004) Applied Catalysis A: General 263:83

    Article  CAS  Google Scholar 

  4. Huang Y, Kavan L, Exnar I, Gratzel M (1995) J Electrochem. Society 142:L142

    Article  CAS  Google Scholar 

  5. Aliev AE, Shin HW (2002) Displays 23:239

    Article  CAS  Google Scholar 

  6. Fretwell R, Douglas P, (2001) Photochem J Photobiol A: Chem 143:229

    Article  CAS  Google Scholar 

  7. Tai WP, Oh JH (2002) Sensors and Actuators B 85:154

    Article  Google Scholar 

  8. Francioso L, Presicce DS, Taurino AM, Rella R, Siciliano P, Ficarella A (2003) Sensors Actuators B 95:66

    Article  CAS  Google Scholar 

  9. Inagaki M, Nakazawa Y, Hirano M, Kobayashi Y, Toyoda M (2001) J Inorg Mater 3:809

    Article  CAS  Google Scholar 

  10. Tanner RE, Liang Y, Altman EI (2002) Surface Science 506:251

    Article  CAS  Google Scholar 

  11. Shimizu K, Imai H, Hirashima H, Tsukuma K (1999) Thin Solid Films 351:220

    Article  CAS  Google Scholar 

  12. Blesic MD, Saponjic ZV, Nedeljkovic JM, Uskokovic DP (2002) Mater Lett 54:298

    Article  CAS  Google Scholar 

  13. Carotta MC, Ferroni M, Gnani D, Guidi V, Merli M, Martinelli G, Casale MC, Notaro M (1999) Sensors Actuators B 58:310

    Article  Google Scholar 

  14. Lee DS, Han SD, Huh JS, Lee DD (1999) Sensors Actuators B 60:57

    Article  Google Scholar 

  15. Ruiz AM, Arbiol J, Cornet A, Shimanoe K, Morante JR, Yamazoe N (2005) Mater Res Soc 828:A4.10.1

    Google Scholar 

  16. Liu X, Yang J, Wang L, Yang X, Lu L, Wang X (2000) Mater Sci Engi A 289:241

    Article  Google Scholar 

  17. Devi GS, Hyodo T, Shimizu Y, Egashira M (2002) Sensors Actuators B 87:122

    Article  Google Scholar 

  18. Garzella C, Comini E, Tempesti E, Frigeri C, Sberveglieri G (2000) Sensors Actuators B 68:189

    Article  Google Scholar 

  19. Keshmiri M, Mohseni M, Troczynski T (2004) Applied Catalysis B: Environmental 53:209

    Article  CAS  Google Scholar 

  20. Chen W, Zhang J, Fang Q, Li S, Wu J, Li F, Jiang K (2004) Sensors Actuators B 100:195

    Article  CAS  Google Scholar 

  21. Miki T, Nishizawa K, Suzuki K, Kato K (2004) Mater Lett 58:2751

    Article  CAS  Google Scholar 

  22. Chemseddine A, Moritz T (1999) Eur J Inorg Chem 235

  23. Zhang H, Finnegan M, Banfield JF (2001) Nano Letters 1:81

    Article  CAS  Google Scholar 

  24. Sivakumar S, Krishna Pillai P, Mukundan P, Warrier KGK (2002) Mater Lett 57:330

    Article  CAS  Google Scholar 

  25. Pottier A, Cassaignon S, Chaneac C, Villain F, Tronc E, Jolivet JP (2003) J Mater Chem 13:877

    Article  CAS  Google Scholar 

  26. Cordero-Cabrera MC, Walker GS, Grant D (2005) J Mater Sci 40:3709

    Article  CAS  Google Scholar 

  27. Spurr R, Myers H (1957) Anal Chem 29:760

    Article  CAS  Google Scholar 

  28. Cullity BD (1978) Elements of X-ray diffraction, Addison-Wesley Publishing Company Inc, London, p 99

    Google Scholar 

  29. Malvern instruments (2003) DST customer training manual for zeta potential, chapter 6

  30. Socrates G (1994) Infrared characteristic group frequencies: Tables and charts, Second Edition John Wiley & Sons, England, p 62/237

    Google Scholar 

  31. Ivanova T, Harizanova A, Surtchev M (2002) Mater Lett 55:327

    Article  CAS  Google Scholar 

  32. Carp O, Huisman CL, Reller A (2004) Progress in Solid State Chemistry 32:33

    Article  CAS  Google Scholar 

  33. Diebold U (2003) Surface Science Reports 48:53

    Article  CAS  Google Scholar 

  34. Bokhimi X, Morales A, Pedraza F (2002) J Solid State Chem 169:176

    Article  CAS  Google Scholar 

  35. JCPDS PDF-2pattern 73–1764

  36. Mohammadi MR, Cordero-Cabrera MC, Fray DJ, Ghorbani M, (2006) In Press in Journal of Sensors Actuators B

  37. Mohammadi MR, Ghorbani M, Fray DJ (2006) In Press in J Mater Sci Techn

  38. Mohammadi MR, Ghorbani M, Cordero-Cabrera MC, Fray DJ (2006) In Press in J Mater Sci

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadi, M.R., Cordero-Cabrera, M.C., Ghorbani, M. et al. Synthesis of high surface area nanocrystalline anatase-TiO2 powders derived from particulate sol-gel route by tailoring processing parameters. J Sol-Gel Sci Technol 40, 15–23 (2006). https://doi.org/10.1007/s10971-006-8267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-8267-0

Keywords

Navigation